Abstract:Any entity in the visual world can be hierarchically grouped based on shared characteristics and mapped to fine-grained sub-categories. While Multi-modal Large Language Models (MLLMs) achieve strong performance on coarse-grained visual tasks, they often struggle with Fine-Grained Visual Recognition (FGVR). Adapting general-purpose MLLMs to FGVR typically requires large amounts of annotated data, which is costly to obtain, leaving a substantial performance gap compared to contrastive CLIP models dedicated for discriminative tasks. Moreover, MLLMs tend to overfit to seen sub-categories and generalize poorly to unseen ones. To address these challenges, we propose Fine-R1, an MLLM tailored for FGVR through an R1-style training framework: (1) Chain-of-Thought Supervised Fine-tuning, where we construct a high-quality FGVR CoT dataset with rationales of "visual analysis, candidate sub-categories, comparison, and prediction", transition the model into a strong open-world classifier; and (2) Triplet Augmented Policy Optimization, where Intra-class Augmentation mixes trajectories from anchor and positive images within the same category to improve robustness to intra-class variance, while Inter-class Augmentation maximizes the response distinction conditioned on images across sub-categories to enhance discriminative ability. With only 4-shot training, Fine-R1 outperforms existing general MLLMs, reasoning MLLMs, and even contrastive CLIP models in identifying both seen and unseen sub-categories, showing promise in working in knowledge-intensive domains where gathering expert annotations for all sub-categories is arduous. Code is available at https://github.com/PKU-ICST-MIPL/FineR1_ICLR2026.
Abstract:Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.