Abstract:In this paper, we propose DiffusionNER, which formulates the named entity recognition task as a boundary-denoising diffusion process and thus generates named entities from noisy spans. During training, DiffusionNER gradually adds noises to the golden entity boundaries by a fixed forward diffusion process and learns a reverse diffusion process to recover the entity boundaries. In inference, DiffusionNER first randomly samples some noisy spans from a standard Gaussian distribution and then generates the named entities by denoising them with the learned reverse diffusion process. The proposed boundary-denoising diffusion process allows progressive refinement and dynamic sampling of entities, empowering DiffusionNER with efficient and flexible entity generation capability. Experiments on multiple flat and nested NER datasets demonstrate that DiffusionNER achieves comparable or even better performance than previous state-of-the-art models.
Abstract:Recent text-to-image generation models have shown promising results in generating high-fidelity photo-realistic images. In parallel, the problem of data scarcity has brought a growing interest in employing AIGC technology for high-quality data expansion. However, this paradigm requires well-designed prompt engineering that cost-less data expansion and labeling remain under-explored. Inspired by LLM's powerful capability in task guidance, we propose a new paradigm of annotated data expansion named as ChatGenImage. The core idea behind it is to leverage the complementary strengths of diverse models to establish a highly effective and user-friendly pipeline for interactive data augmentation. In this work, we extensively study how LLMs communicate with AIGC model to achieve more controllable image generation and make the first attempt to collaborate them for automatic data augmentation for a variety of downstream tasks. Finally, we present fascinating results obtained from our ChatGenImage framework and demonstrate the powerful potential of our synthetic data for systematic vision adaptation. Our codes are available at https://github.com/Yuqifan1117/Labal-Anything-Pipeline.
Abstract:Pretrained vision-language models, such as CLIP, have demonstrated strong generalization capabilities, making them promising tools in the realm of zero-shot visual recognition. Visual relation detection (VRD) is a typical task that identifies relationship (or interaction) types between object pairs within an image. However, naively utilizing CLIP with prevalent class-based prompts for zero-shot VRD has several weaknesses, e.g., it struggles to distinguish between different fine-grained relation types and it neglects essential spatial information of two objects. To this end, we propose a novel method for zero-shot VRD: RECODE, which solves RElation detection via COmposite DEscription prompts. Specifically, RECODE first decomposes each predicate category into subject, object, and spatial components. Then, it leverages large language models (LLMs) to generate description-based prompts (or visual cues) for each component. Different visual cues enhance the discriminability of similar relation categories from different perspectives, which significantly boosts performance in VRD. To dynamically fuse different cues, we further introduce a chain-of-thought method that prompts LLMs to generate reasonable weights for different visual cues. Extensive experiments on four VRD benchmarks have demonstrated the effectiveness and interpretability of RECODE.
Abstract:We present an end-to-end diffusion-based method for editing videos with human language instructions, namely $\textbf{InstructVid2Vid}$. Our approach enables the editing of input videos based on natural language instructions without any per-example fine-tuning or inversion. The proposed InstructVid2Vid model combines a pretrained image generation model, Stable Diffusion, with a conditional 3D U-Net architecture to generate time-dependent sequence of video frames. To obtain the training data, we incorporate the knowledge and expertise of different models, including ChatGPT, BLIP, and Tune-a-Video, to synthesize video-instruction triplets, which is a more cost-efficient alternative to collecting data in real-world scenarios. To improve the consistency between adjacent frames of generated videos, we propose the Frame Difference Loss, which is incorporated during the training process. During inference, we extend the classifier-free guidance to text-video input to guide the generated results, making them more related to both the input video and instruction. Experiments demonstrate that InstructVid2Vid is able to generate high-quality, temporally coherent videos and perform diverse edits, including attribute editing, change of background, and style transfer. These results highlight the versatility and effectiveness of our proposed method. Code is released in $\href{https://github.com/BrightQin/InstructVid2Vid}{InstructVid2Vid}$.
Abstract:Large-scale multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training. However, these samples are always collected continuously in real scenarios. This paper discusses the feasibility of continual CLIP training using streaming data. Unlike continual learning based on self-supervised learning methods for pure images, which is empirically robust against catastrophic forgetting, CLIP's performance degeneration in the continual setting is significant and non-neglectable. By analyzing the changes in the model's representation space during continual CLIP training from a spatial geometry perspective, we explore and summarize these spatial variations as Spatial Disorder (SD), which can be divided into Intra-modal Rotation and Inter-modal Deviation. Moreover, we empirically and theoretically demonstrate how SD leads to a performance decline for CLIP on cross-modal retrieval tasks. To alleviate SD, we propose a new continual vision-language representation learning framework Mod-X: Maintain off-diagonal information-matriX. By selectively aligning the off-diagonal information distribution of contrastive matrices, the Mod-X improves the capability of the multi-modal model by maintaining the multi-modal representation space alignment on the old data domain during continuously fitting the new training data domain. Experiments on commonly used datasets with different scales and scopes have demonstrated the effectiveness of our method.
Abstract:The MultiCoNER \RNum{2} shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER \RNum{1} task. To cope with these problems, the previous top systems in the MultiCoNER \RNum{1} either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team \textbf{DAMO-NLP} proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system\footnote{We will release the dataset, code, and scripts of our system at {\small \url{https://github.com/modelscope/AdaSeq/tree/master/examples/U-RaNER}}.} wins 9 out of 13 tracks in the MultiCoNER \RNum{2} shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.
Abstract:Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: \textbf{CO}rrection $\rightarrow$ \textbf{M}odificat\textbf{I}on $\rightarrow$ balan\textbf{C}e, abbreviated as \textbf{\method{}}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed \method{} significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.
Abstract:Solving complicated AI tasks with different domains and modalities is a key step toward advanced artificial intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards advanced artificial intelligence.
Abstract:Scene Graph Generation (SGG) aims to extract <subject, predicate, object> relationships in images for vision understanding. Although recent works have made steady progress on SGG, they still suffer long-tail distribution issues that tail-predicates are more costly to train and hard to distinguish due to a small amount of annotated data compared to frequent predicates. Existing re-balancing strategies try to haddle it via prior rules but are still confined to pre-defined conditions, which are not scalable for various models and datasets. In this paper, we propose a Cross-modal prediCate boosting (CaCao) framework, where a visually-prompted language model is learned to generate diverse fine-grained predicates in a low-resource way. The proposed CaCao can be applied in a plug-and-play fashion and automatically strengthen existing SGG to tackle the long-tailed problem. Based on that, we further introduce a novel Entangled cross-modal prompt approach for open-world predicate scene graph generation (Epic), where models can generalize to unseen predicates in a zero-shot manner. Comprehensive experiments on three benchmark datasets show that CaCao consistently boosts the performance of multiple scene graph generation models in a model-agnostic way. Moreover, our Epic achieves competitive performance on open-world predicate prediction.
Abstract:Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.