Abstract:This paper analyses the security performance of a reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicle (UAV) communication system with integrated sensing and communications (ISAC). We consider a multiple-antenna UAV transmitting ISAC waveforms to simultaneously detect an untrusted target in the surrounding environment and communicate with a ground Internet-of-Things (IoT) device in the presence of an eavesdropper (Eve). Given that the Eve can conceal their channel state information (CSI) in practical scenarios, we assume that the CSI of the eavesdropper channel is imperfect. For this RIS-aided ISAC-UAV system, we aim to maximize the average communication secrecy rate by jointly optimizing UAV trajectory, RIS passive beamforming, transmit beamforming, and receive beamforming. However, this joint optimization problem is non-convex due to multi-variable coupling. As such, we solve the optimization using an efficient and tractable algorithm using a block coordinate descent (BCD) method. Specifically, we develop a successive convex approximation (SCA) algorithm based on semidefinite relaxation (SDR) to optimise the joint optimization as four separate non-convex subproblems. Numerical results show that our proposed algorithm can successfully ensure the accuracy of sensing targets and significantly improve the communication secrecy rate of the IoT communication devices.
Abstract:In mobile systems with low-altitude vehicles, integrated sensing and communication (ISAC) is considered an effective approach to increase the transmission rate due to limited spectrum resources. To further improve the ISAC performance, this paper proposes a novel method called integrated sensing and communication-movable antenna (ISAC-MA) to optimize the antenna's position. Our goal is to support low-space vehicles by optimizing radar and communication joint beamforming and antenna position in the presence of clutter. This scheme not only guarantees the required signal-to-noise ratio (SNR) for sensing but also further improves the SNR for communication. A successive convex approximation (SCA)-based block coordinate descent (BCD) algorithm is proposed to maximize communication capacity under the condition of sensing SNR. Numerical results show that, compared with the traditional ISAC system and various benchmark schemes, the proposed ISAC-MA system can achieve higher communication capacity under the same sensing SNR constraints.
Abstract:This paper investigates a novel unmanned aerial vehicle (UAV) secure communication system with integrated sensing and communications. We consider wireless security enhancement for a multiple-antenna UAV transmitting ISAC waveforms to communicate with multiple ground Internet-of-Thing devices and detect the surrounding environment. Specifically, we aim to maximize the average communication secrecy rate by optimizing the UAV trajectory and beamforming vectors. Given that the UAV trajectory optimization problem is non-convex due to multi-variable coupling develop an efficient algorithm based on the successive convex approximation (SCA) algorithm. Numerical results show that our proposed algorithm can ensure the accuracy of sensing targets and improve the communication secrecy rate.
Abstract:Dynamic metasurface antennas (DMAs) represent a novel transceiver array architecture for extremely large-scale (XL) communications, offering the advantages of reduced power consumption and lower hardware costs compared to conventional arrays. This paper focuses on near-field channel estimation for XL-DMAs. We begin by analyzing the near-field characteristics of uniform planar arrays (UPAs) and introducing the Oblong Approx. model. This model decouples elevation-azimuth (EL-AZ) parameters for XL-DMAs, providing an effective means to characterize the near-field effect. It offers simpler mathematical expressions than the second-order Taylor expansion model, all while maintaining negligible model errors for oblong-shaped arrays. Building on the Oblong Approx. model, we propose an EL-AZ-decoupled estimation framework that involves near- and far-field parameter estimation for AZ/EL and EL/AZ directions, respectively. The former is formulated as a distributed compressive sensing problem, addressed using the proposed off-grid distributed orthogonal least squares algorithm, while the latter involves a straightforward parallelizable search. Crucially, we illustrate the viability of decoupled EL-AZ estimation for near-field UPAs, exhibiting commendable performance and linear complexity correlated with the number of metasurface elements. Moreover, we design an measurement matrix optimization method with the Lorentzian constraint on DMAs and highlight the estimation performance degradation resulting from this constraint.
Abstract:Flexible antenna arrays (FAAs), distinguished by their rotatable, bendable, and foldable properties, are extensively employed in flexible radio systems to achieve customized radiation patterns. This paper aims to illustrate that FAAs, capable of dynamically adjusting surface shapes, can enhance communication performances with both omni-directional and directional antenna patterns, in terms of multi-path channel power and channel angle Cram\'{e}r-Rao bounds. To this end, we develop a mathematical model that elucidates the impacts of the variations in antenna positions and orientations as the array transitions from a flat to a rotated, bent, and folded state, all contingent on the flexible degree-of-freedom. Moreover, since the array shape adjustment operates across the entire beamspace, especially with directional patterns, we discuss the sum-rate in the multi-sector base station that covers the $360^\circ$ communication area. Particularly, to thoroughly explore the multi-sector sum-rate, we propose separate flexible precoding (SFP), joint flexible precoding (JFP), and semi-joint flexible precoding (SJFP), respectively. In our numerical analysis comparing the optimized FAA to the fixed uniform planar array, we find that the bendable FAA achieves a remarkable $156\%$ sum-rate improvement compared to the fixed planar array in the case of JFP with the directional pattern. Furthermore, the rotatable FAA exhibits notably superior performance in SFP and SJFP cases with omni-directional patterns, with respective $35\%$ and $281\%$.
Abstract:This paper investigates flexible beamforming design in an integrated sensing and communication (ISAC) network with movable antennas (MAs). A bistatic radar system is integrated into a multi-user multiple-input-single-output (MU-MISO) system, with the base station (BS) equipped with MAs. This enables array response reconfiguration by adjusting the positions of antennas. Thus, a joint beamforming and antenna position optimization problem, namely flexible beamforming, is proposed to maximize communication rate and sensing mutual information (MI). The fractional programming (FP) method is adopted to transform the non-convex objective function, and we alternatively update the beamforming matrix and antenna positions. Karush-Kuhn-Tucker (KKT) conditions are employed to derive the close-form solution of the beamforming matrix, while we propose an efficient search-based projected gradient ascent (SPGA) method to update the antenna positions. Simulation results demonstrate that MAs significantly enhance the ISAC performance when employing our proposed algorithm, achieving a 59.8% performance gain compared to fixed uniform arrays.
Abstract:A dual-robust design of beamforming is investigated in an integrated sensing and communication (ISAC) system.Existing research on robust ISAC waveform design, while proposing solutions to imperfect channel state information (CSI), generally depends on prior knowledge of the target's approximate location to design waveforms. This approach, however, limits the precision in sensing the target's exact location. In this paper, considering both CSI imperfection and target location uncertainty, a novel framework of joint robust optimization is proposed by maximizing the weighted sum of worst-case data rate and beampattern gain. To address this challenging problem, we propose an efficient two-layer iteration algorithm based on S-Procedure and convex hull. Finally, numerical results verify the effectiveness and performance improvement of our dual-robust algorithm, as well as the trade-off between communication and sensing performance.
Abstract:This letter rethinks traditional precoding in multi-user wireless communications with movable antennas (MAs). Utilizing MAs for optimal antenna positioning, we introduce a sparse optimization (SO)-based approach focusing on regularized zero-forcing (RZF). This framework targets the optimization of antenna positions and the precoding matrix to minimize inter-user interference and transmit power. We propose an off-grid regularized least squares-based orthogonal matching pursuit (RLS-OMP) method for this purpose. Moreover, we provide deeper insights into antenna position optimization using RLS-OMP, viewed from a subspace projection angle. Overall, our proposed flexible precoding scheme demonstrates a sum rate that exceeds more than twice that of fixed antenna positions.
Abstract:In this paper, reconfigurable intelligent surface (RIS) is employed in a millimeter wave (mmWave) integrated sensing and communications (ISAC) system. To alleviate the multi-hop attenuation, the semi-self sensing RIS approach is adopted, wherein sensors are configured at the RIS to receive the radar echo signal. Focusing on the estimation accuracy, the Cramer-Rao bound (CRB) for estimating the direction-of-the-angles is derived as the metric for sensing performance. A joint optimization problem on hybrid beamforming and RIS phaseshifts is proposed to minimize the CRB, while maintaining satisfactory communication performance evaluated by the achievable data rate. The CRB minimization problem is first transformed as a more tractable form based on Fisher information matrix (FIM). To solve the complex non-convex problem, a double layer loop algorithm is proposed based on penalty concave-convex procedure (penalty-CCCP) and block coordinate descent (BCD) method with two sub-problems. Successive convex approximation (SCA) algorithm and second order cone (SOC) constraints are employed to tackle the non-convexity in the hybrid beamforming optimization. To optimize the unit modulus constrained analog beamforming and phase shifts, manifold optimization (MO) is adopted. Finally, the numerical results verify the effectiveness of the proposed CRB minimization algorithm, and show the performance improvement compared with other baselines. Additionally, the proposed hybrid beamforming algorithm can achieve approximately 96% of the sensing performance exhibited by the full digital approach within only a limited number of radio frequency (RF) chains.
Abstract:In this letter, a weighted minimum mean square error (WMMSE) empowered integrated sensing and communication (ISAC) system is investigated. One transmitting base station and one receiving wireless access point are considered to serve multiple users a sensing target. Based on the theory of mutual-information (MI), communication MI and sensing MI rate are utilized as the performance metrics under the presence of clutters. In particular, we propose an novel MI-based WMMSE-ISAC method by developing a unique transceiver design mechanism to maximize the weighted sensing and communication sum-rate of this system. Such a maximization process is achieved by utilizing the classical method -- WMMSE, aiming to better manage the effect of sensing clutters and the interference among users. Numerical results show the effectiveness of our proposed method, and the performance trade-off between sensing and communication is also validated.