Abstract:Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.
Abstract:Metaphorical expressions are abundant in Traditional Chinese Medicine (TCM), conveying complex disease mechanisms and holistic health concepts through culturally rich and often abstract terminology. Bridging these metaphors to anatomically driven Western medical (WM) concepts poses significant challenges for both automated language processing and real-world clinical practice. To address this gap, we propose a novel multi-agent and chain-of-thought (CoT) framework designed to interpret TCM metaphors accurately and map them to WM pathophysiology. Specifically, our approach combines domain-specialized agents (TCM Expert, WM Expert) with a Coordinator Agent, leveraging stepwise chain-of-thought prompts to ensure transparent reasoning and conflict resolution. We detail a methodology for building a metaphor-rich TCM dataset, discuss strategies for effectively integrating multi-agent collaboration and CoT reasoning, and articulate the theoretical underpinnings that guide metaphor interpretation across distinct medical paradigms. We present a comprehensive system design and highlight both the potential benefits and limitations of our approach, while leaving placeholders for future experimental validation. Our work aims to support clinical decision-making, cross-system educational initiatives, and integrated healthcare research, ultimately offering a robust scaffold for reconciling TCM's symbolic language with the mechanistic focus of Western medicine.




Abstract:Large Language Models (LLMs) demonstrate substantial potential in delivering legal consultation services to users without a legal background, attributed to their superior text comprehension and generation capabilities. Nonetheless, existing Chinese legal LLMs limit interaction to a single model-user dialogue, unlike the collaborative consultations typical of law firms, where multiple staff members contribute to a single consultation. This limitation prevents an authentic consultation experience. Additionally, extant Chinese legal LLMs suffer from critical limitations: (1) insufficient control over the quality of instruction fine-tuning data; (2) increased model hallucination resulting from users' ambiguous queries; and (3) a reduction in the model's ability to follow instructions over multiple dialogue turns. In response to these challenges, we propose a novel legal dialogue framework that leverages the collaborative capabilities of multiple LLM agents, termed LawLuo. This framework encompasses four agents: a receptionist, a lawyer, a secretary, and a boss, each responsible for different functionalities, collaboratively providing a comprehensive legal consultation to users. Additionally, we constructed two high-quality legal dialogue datasets, KINLED and MURLED, and fine-tuned ChatGLM-3-6b using these datasets. We propose a legal query clarification algorithm called ToLC. Experimental results demonstrate that LawLuo outperforms baseline LLMs, including GPT-4, across three dimensions: lawyer-like language style, the usefulness of legal advice, and the accuracy of legal knowledge. Our code and datasets are available at https://github.com/NEFUJing/LawLuo.