The University of Hong Kong
Abstract:Sequential recommender infers users' evolving psychological motivations from historical interactions to recommend the next preferred items. Most existing methods compress recent behaviors into a single vector and optimize it toward a single observed target item, but lack explicit modeling of psychological motivation shift. As a result, they struggle to uncover the distributional patterns across different shift degrees and to capture collaborative knowledge that is sensitive to psychological motivation shift. We propose a general framework, the Sequential Recommender System Based on User Psychological Motivation, to enhance sequential recommenders with psychological motivation shift-aware user modeling. Specifically, the Psychological Motivation Shift Assessment quantitatively measures psychological motivation shift; guided by PMSA, the Shift Information Construction models dynamically evolving multi-level shift states, and the Psychological Motivation Shift-driven Information Decomposition decomposes and regularizes representations across shift levels. Moreover, the Psychological Motivation Shift Information Matching strengthens collaborative patterns related to psychological motivation shift to learn more discriminative user representations. Extensive experiments on three public benchmarks show that SRSUPM consistently outperforms representative baselines on diverse sequential recommender tasks.
Abstract:Vision-language pretrained models offer strong transferable representations, yet adapting them in privacy-sensitive multi-party settings is challenging due to the high communication cost of federated optimization and the limited local data on clients. Federated prompt learning mitigates this issue by keeping the VLPM backbone frozen and collaboratively training lightweight prompt parameters. However, existing approaches typically enforce a unified prompt structure and length across clients, which is inadequate under practical client heterogeneity in both data distributions and system resources, and may further introduce conflicts between globally shared and locally optimal knowledge. To address these challenges, we propose \textbf{SDFed}, a heterogeneous federated prompt learning framework that bridges Local-Global Discrepancy via Subspace Refinement and Divergence Control. SDFed maintains a fixed-length global prompt for efficient aggregation while allowing each client to learn a variable-length local prompt to better match its data characteristics and capacity. To mitigate local-global conflicts and facilitate effective knowledge transfer, SDFed introduces a subspace refinement method for local prompts and an information retention and divergence control strategy that preserves key local information while maintaining appropriate separability between global and local representations. Extensive experiments on several datasets demonstrate that SDFed consistently improves performance and robustness in heterogeneous federated settings.
Abstract:The rapid advancement of vision-language models has catalyzed the emergence of GUI agents, which hold immense potential for automating complex tasks, from online shopping to flight booking, thereby alleviating the burden of repetitive digital workflows. As a foundational capability, GUI grounding is typically established as a prerequisite for end-to-end task execution. It enables models to precisely locate interface elements, such as text and icons, to perform accurate operations like clicking and typing. Unlike prior works that fine-tune models already possessing strong spatial awareness (e.g., Qwen3-VL), we aim to master the full technical pipeline by starting from a base model with minimal grounding ability, such as POINTS-1.5. We introduce POINTS-GUI-G-8B, which achieves state-of-the-art performance with scores of 59.9 on ScreenSpot-Pro, 66.0 on OSWorld-G, 95.7 on ScreenSpot-v2, and 49.9 on UI-Vision. Our model's success is driven by three key factors: (1) Refined Data Engineering, involving the unification of diverse open-source datasets format alongside sophisticated strategies for augmentation, filtering, and difficulty grading; (2) Improved Training Strategies, including continuous fine-tuning of the vision encoder to enhance perceptual accuracy and maintaining resolution consistency between training and inference; and (3) Reinforcement Learning (RL) with Verifiable Rewards. While RL is traditionally used to bolster reasoning, we demonstrate that it significantly improves precision in the perception-intensive GUI grounding task. Furthermore, GUI grounding provides a natural advantage for RL, as rewards are easily verifiable and highly accurate.
Abstract:Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
Abstract:In this paper, we propose a maneuverablejamming-aided secure communication and sensing (SCS) scheme for an air-to-ground integrated sensing and communication (A2G-ISAC) system, where a dual-functional source UAV and a maneuverable jamming UAV operate collaboratively in a hybrid monostatic-bistatic radar configuration. The maneuverable jamming UAV emits artificial noise to assist the source UAV in detecting multiple ground targets while interfering with an eavesdropper. The effects of residual interference caused by imperfect successive interference cancellation on the received signal-to-interference-plus-noise ratio are considered, which degrades the system performance. To maximize the average secrecy rate (ASR) under transmit power budget, UAV maneuvering constraints, and sensing requirements, the dual-UAV trajectory and beamforming are jointly optimized. Given that secure communication and sensing fundamentally conflict in terms of resource allocation, making it difficult to achieve optimal performance for both simultaneously, we adopt a two-phase design to address this challenge. By dividing the mission into the secure communication (SC) phase and the SCS phase, the A2G-ISAC system can focus on optimizing distinct objectives separately. In the SC phase, a block coordinate descent algorithm employing the trust-region successive convex approximation and semidefinite relaxation iteratively optimizes dual-UAV trajectory and beamforming. For the SCS phase, a weighted distance minimization problem determines the suitable dual-UAV sensing positions by a greedy algorithm, followed by the joint optimization of source beamforming and jamming beamforming. Simulation results demonstrate that the proposed scheme achieves the highest ASR among benchmarks while maintaining robust sensing performance, and confirm the impact of the SIC residual interference on both secure communication and sensing.
Abstract:Federated learning enables collaborative model training across decentralized clients under privacy constraints. Quantum computing offers potential for alleviating computational and communication burdens in federated learning, yet hybrid classical-quantum federated learning remains susceptible to performance degradation under non-IID data. To address this,we propose FEDCOMPASS, a layered aggregation framework for hybrid classical-quantum federated learning. FEDCOMPASS employs spectral clustering to group clients by class distribution similarity and performs cluster-wise aggregation for classical feature extractors. For quantum parameters, it uses circular mean aggregation combined with adaptive optimization to ensure stable global updates. Experiments on three benchmark datasets show that FEDCOMPASS improves test accuracy by up to 10.22% and enhances convergence stability under non-IID settings, outperforming six strong federated learning baselines.
Abstract:In this paper, we propose a 3D asset-referenced diffusion model for image generation, exploring how to integrate 3D assets into image diffusion models. Existing reference-based image generation methods leverage large-scale pretrained diffusion models and demonstrate strong capability in generating diverse images conditioned on a single reference image. However, these methods are limited to single-image references and cannot leverage 3D assets, constraining their practical versatility. To address this gap, we present a cross-domain diffusion model with dual-branch perception that leverages multi-view RGB images and point maps of 3D assets to jointly model their colors and canonical-space coordinates, achieving precise consistency between generated images and the 3D references. Our spatially aligned dual-branch generation architecture and domain-decoupled generation mechanism ensure the simultaneous generation of two spatially aligned but content-disentangled outputs, RGB images and point maps, linking 2D image attributes with 3D asset attributes. Experiments show that our approach effectively uses 3D assets as references to produce images consistent with the given assets, opening new possibilities for combining diffusion models with 3D content creation.
Abstract:In this paper, we find that the generation of 3D human motions and 2D human videos is intrinsically coupled. 3D motions provide the structural prior for plausibility and consistency in videos, while pre-trained video models offer strong generalization capabilities for motions, which necessitate coupling their generation processes. Based on this, we present CoMoVi, a co-generative framework that couples two video diffusion models (VDMs) to generate 3D human motions and videos synchronously within a single diffusion denoising loop. To achieve this, we first propose an effective 2D human motion representation that can inherit the powerful prior of pre-trained VDMs. Then, we design a dual-branch diffusion model to couple human motion and video generation process with mutual feature interaction and 3D-2D cross attentions. Moreover, we curate CoMoVi Dataset, a large-scale real-world human video dataset with text and motion annotations, covering diverse and challenging human motions. Extensive experiments demonstrate the effectiveness of our method in both 3D human motion and video generation tasks.
Abstract:We present UniSH, a unified, feed-forward framework for joint metric-scale 3D scene and human reconstruction. A key challenge in this domain is the scarcity of large-scale, annotated real-world data, forcing a reliance on synthetic datasets. This reliance introduces a significant sim-to-real domain gap, leading to poor generalization, low-fidelity human geometry, and poor alignment on in-the-wild videos. To address this, we propose an innovative training paradigm that effectively leverages unlabeled in-the-wild data. Our framework bridges strong, disparate priors from scene reconstruction and HMR, and is trained with two core components: (1) a robust distillation strategy to refine human surface details by distilling high-frequency details from an expert depth model, and (2) a two-stage supervision scheme, which first learns coarse localization on synthetic data, then fine-tunes on real data by directly optimizing the geometric correspondence between the SMPL mesh and the human point cloud. This approach enables our feed-forward model to jointly recover high-fidelity scene geometry, human point clouds, camera parameters, and coherent, metric-scale SMPL bodies, all in a single forward pass. Extensive experiments demonstrate that our model achieves state-of-the-art performance on human-centric scene reconstruction and delivers highly competitive results on global human motion estimation, comparing favorably against both optimization-based frameworks and HMR-only methods. Project page: https://murphylmf.github.io/UniSH/
Abstract:We introduce FinMMDocR, a novel bilingual multimodal benchmark for evaluating multimodal large language models (MLLMs) on real-world financial numerical reasoning. Compared to existing benchmarks, our work delivers three major advancements. (1) Scenario Awareness: 57.9% of 1,200 expert-annotated problems incorporate 12 types of implicit financial scenarios (e.g., Portfolio Management), challenging models to perform expert-level reasoning based on assumptions; (2) Document Understanding: 837 Chinese/English documents spanning 9 types (e.g., Company Research) average 50.8 pages with rich visual elements, significantly surpassing existing benchmarks in both breadth and depth of financial documents; (3) Multi-Step Computation: Problems demand 11-step reasoning on average (5.3 extraction + 5.7 calculation steps), with 65.0% requiring cross-page evidence (2.4 pages average). The best-performing MLLM achieves only 58.0% accuracy, and different retrieval-augmented generation (RAG) methods show significant performance variations on this task. We expect FinMMDocR to drive improvements in MLLMs and reasoning-enhanced methods on complex multimodal reasoning tasks in real-world scenarios.