Abstract:Dynamic density estimation is ubiquitous in many applications, including computer vision and signal processing. One popular method to tackle this problem is the "sliding window" kernel density estimator. There exist various implementations of this method that use heuristically defined weight sequences for the observed data. The weight sequence, however, is a key aspect of the estimator affecting the tracking performance significantly. In this work, we study the exact mean integrated squared error (MISE) of "sliding window" Gaussian Kernel Density Estimators for evolving Gaussian densities. We provide a principled guide for choosing the optimal weight sequence by theoretically characterizing the exact MISE, which can be formulated as constrained quadratic programming. We present empirical evidence with synthetic datasets to show that our weighting scheme indeed improves the tracking performance compared to heuristic approaches.
Abstract:In human-centric content generation, the pre-trained text-to-image models struggle to produce user-wanted portrait images, which retain the identity of individuals while exhibiting diverse expressions. This paper introduces our efforts towards personalized face generation. To this end, we propose a novel multi-modal face generation framework, capable of simultaneous identity-expression control and more fine-grained expression synthesis. Our expression control is so sophisticated that it can be specialized by the fine-grained emotional vocabulary. We devise a novel diffusion model that can undertake the task of simultaneously face swapping and reenactment. Due to the entanglement of identity and expression, it's nontrivial to separately and precisely control them in one framework, thus has not been explored yet. To overcome this, we propose several innovative designs in the conditional diffusion model, including balancing identity and expression encoder, improved midpoint sampling, and explicitly background conditioning. Extensive experiments have demonstrated the controllability and scalability of the proposed framework, in comparison with state-of-the-art text-to-image, face swapping, and face reenactment methods.
Abstract:Federated averaging (FedAvg) is a widely employed paradigm for collaboratively training models from distributed clients without sharing data. Nowadays, the neural network has achieved remarkable success due to its extraordinary performance, which makes it a preferred choice as the model in FedAvg. However, the optimization problem of the neural network is often non-convex even non-smooth. Furthermore, FedAvg always involves multiple clients and local updates, which results in an inaccurate updating direction. These properties bring difficulties in analyzing the convergence of FedAvg in training neural networks. Recently, neural tangent kernel (NTK) theory has been proposed towards understanding the convergence of first-order methods in tackling the non-convex problem of neural networks. The deep linear neural network is a classical model in theoretical subject due to its simple formulation. Nevertheless, there exists no theoretical result for the convergence of FedAvg in training the deep linear neural network. By applying NTK theory, we make a further step to provide the first theoretical guarantee for the global convergence of FedAvg in training deep linear neural networks. Specifically, we prove FedAvg converges to the global minimum at a linear rate $\mathcal{O}\big((1-\eta K /N)^t\big)$, where $t$ is the number of iterations, $\eta$ is the learning rate, $N$ is the number of clients and $K$ is the number of local updates. Finally, experimental evaluations on two benchmark datasets are conducted to empirically validate the correctness of our theoretical findings.
Abstract:Artificial neural networks (ANNs), inspired by the interconnection of real neurons, have achieved unprecedented success in various fields such as computer vision and natural language processing. Recently, a novel mathematical ANN model, known as the dendritic neuron model (DNM), has been proposed to address nonlinear problems by more accurately reflecting the structure of real neurons. However, the single-output design limits its capability to handle multi-output tasks, significantly lowering its applications. In this paper, we propose a novel multi-in and multi-out dendritic neuron model (MODN) to tackle multi-output tasks. Our core idea is to introduce a filtering matrix to the soma layer to adaptively select the desired dendrites to regress each output. Because such a matrix is designed to be learnable, MODN can explore the relationship between each dendrite and output to provide a better solution to downstream tasks. We also model a telodendron layer into MODN to simulate better the real neuron behavior. Importantly, MODN is a more general and unified framework that can be naturally specialized as the DNM by customizing the filtering matrix. To explore the optimization of MODN, we investigate both heuristic and gradient-based optimizers and introduce a 2-step training method for MODN. Extensive experimental results performed on 11 datasets on both binary and multi-class classification tasks demonstrate the effectiveness of MODN, with respect to accuracy, convergence, and generality.
Abstract:3D multi-person motion prediction is a challenging task that involves modeling individual behaviors and interactions between people. Despite the emergence of approaches for this task, comparing them is difficult due to the lack of standardized training settings and benchmark datasets. In this paper, we introduce the Multi-Person Interaction Motion (MI-Motion) Dataset, which includes skeleton sequences of multiple individuals collected by motion capture systems and refined and synthesized using a game engine. The dataset contains 167k frames of interacting people's skeleton poses and is categorized into 5 different activity scenes. To facilitate research in multi-person motion prediction, we also provide benchmarks to evaluate the performance of prediction methods in three settings: short-term, long-term, and ultra-long-term prediction. Additionally, we introduce a novel baseline approach that leverages graph and temporal convolutional networks, which has demonstrated competitive results in multi-person motion prediction. We believe that the proposed MI-Motion benchmark dataset and baseline will facilitate future research in this area, ultimately leading to better understanding and modeling of multi-person interactions.
Abstract:This work proposes a novel face-swapping framework FlowFace++, utilizing explicit semantic flow supervision and end-to-end architecture to facilitate shape-aware face-swapping. Specifically, our work pretrains a facial shape discriminator to supervise the face swapping network. The discriminator is shape-aware and relies on a semantic flow-guided operation to explicitly calculate the shape discrepancies between the target and source faces, thus optimizing the face swapping network to generate highly realistic results. The face swapping network is a stack of a pre-trained face-masked autoencoder (MAE), a cross-attention fusion module, and a convolutional decoder. The MAE provides a fine-grained facial image representation space, which is unified for the target and source faces and thus facilitates final realistic results. The cross-attention fusion module carries out the source-to-target face swapping in a fine-grained latent space while preserving other attributes of the target image (e.g. expression, head pose, hair, background, illumination, etc). Lastly, the convolutional decoder further synthesizes the swapping results according to the face-swapping latent embedding from the cross-attention fusion module. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace++ outperforms the state-of-the-art significantly, particularly while the source face is obstructed by uneven lighting or angle offset.
Abstract:This workshop Report Out focuses on the foundational elements of trustworthy AI and OR technology, and how to ensure all AI and OR systems implement these elements in their system designs. Four sessions on various topics within Trustworthy AI were held, these being Fairness, Explainable AI/Causality, Robustness/Privacy, and Human Alignment and Human-Computer Interaction. Following discussions of each of these topics, workshop participants also brainstormed challenge problems which require the collaboration of AI and OR researchers and will result in the integration of basic techniques from both fields to eventually benefit societal needs.
Abstract:In order to produce facial-expression-specified talking head videos, previous audio-driven one-shot talking head methods need to use a reference video with a matching speaking style (i.e., facial expressions). However, finding videos with a desired style may not be easy, potentially restricting their application. In this work, we propose an expression-controllable one-shot talking head method, dubbed TalkCLIP, where the expression in a speech is specified by the natural language. This would significantly ease the difficulty of searching for a video with a desired speaking style. Here, we first construct a text-video paired talking head dataset, in which each video has alternative prompt-alike descriptions. Specifically, our descriptions involve coarse-level emotion annotations and facial action unit (AU) based fine-grained annotations. Then, we introduce a CLIP-based style encoder that first projects natural language descriptions to the CLIP text embedding space and then aligns the textual embeddings to the representations of speaking styles. As extensive textual knowledge has been encoded by CLIP, our method can even generalize to infer a speaking style whose description has not been seen during training. Extensive experiments demonstrate that our method achieves the advanced capability of generating photo-realistic talking heads with vivid facial expressions guided by text descriptions.
Abstract:Human affective behavior analysis focuses on analyzing human expressions or other behaviors, which helps improve the understanding of human psychology. CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW) makes great efforts to provide the diversity data for the recognition of the commonly used emotion representations, including Action Units~(AU), basic expression categories and Valence-Arousal~(VA). In this paper, we introduce our submission to the CVPR 2023: ABAW5 for AU detection, expression classification, VA estimation and emotional reaction intensity (ERI) estimation. First of all, we introduce the vision information from an MAE model, which has been pre-trained on a large-scale face image dataset in a self-supervised manner. Then the MAE encoder part is finetuned on the ABAW challenges on the single frame of Aff-wild2 dataset. We also exploit the multi-modal and temporal information from the videos and design a transformer-based framework to fusion the multi-modal features. Moreover, we construct a novel two-branch collaboration training strategy to further enhance the model generalization by randomly interpolating the logits space. The extensive quantitative experiments, as well as ablation studies on the Aff-Wild2 dataset and Hume-Reaction dataset prove the effectiveness of our proposed method.
Abstract:For few-shot learning, it is still a critical challenge to realize photo-realistic face visually dubbing on high-resolution videos. Previous works fail to generate high-fidelity dubbing results. To address the above problem, this paper proposes a Deformation Inpainting Network (DINet) for high-resolution face visually dubbing. Different from previous works relying on multiple up-sample layers to directly generate pixels from latent embeddings, DINet performs spatial deformation on feature maps of reference images to better preserve high-frequency textural details. Specifically, DINet consists of one deformation part and one inpainting part. In the first part, five reference facial images adaptively perform spatial deformation to create deformed feature maps encoding mouth shapes at each frame, in order to align with the input driving audio and also the head poses of the input source images. In the second part, to produce face visually dubbing, a feature decoder is responsible for adaptively incorporating mouth movements from the deformed feature maps and other attributes (i.e., head pose and upper facial expression) from the source feature maps together. Finally, DINet achieves face visually dubbing with rich textural details. We conduct qualitative and quantitative comparisons to validate our DINet on high-resolution videos. The experimental results show that our method outperforms state-of-the-art works.