Abstract:LoRa is a widely recognized modulation technology in the field of low power wide area networks (LPWANs). However, the data rate of LoRa is too low to satisfy the requirements in the context of modern Internet of Things (IoT) applications. To address this issue, we propose a novel high-data-rate LoRa scheme based on the spreading factor index (SFI). In the proposed SFI-LoRa scheme, the starting frequency bin (SFB) of chirp signals is used to transmit information bits, while the combinations of spreading factors (SFs) are exploited as a set of indices to convey additional information bits. Moreover, theoretical expressions for the symbol error rate (SER) and throughput of the proposed SFI-LoRa scheme are derived over additive white Gaussian noise (AWGN) and Rayleigh fading channels. Simulation results not only verify the accuracy of the theoretical analysis, but also demonstrate that the proposed SFI-LoRa scheme improves both the bit error rate (BER) and throughput performance compared to existing high-data-rate LoRa schemes. Therefore, the proposed SFI-LoRa scheme is a potential solution for applications requiring a high data rate in the LPWAN domain.
Abstract:Conformal prediction (CP) is a powerful framework for uncertainty quantification, providing prediction sets with coverage guarantees when calibrated on sufficient labeled data. However, in real-world applications where labeled data is often limited, standard CP can lead to coverage deviation and output overly large prediction sets. In this paper, we extend CP to the semi-supervised setting and propose SemiCP, leveraging both labeled data and unlabeled data for calibration. Specifically, we introduce a novel nonconformity score function, NNM, designed for unlabeled data. This function selects labeled data with similar pseudo-label scores to estimate nonconformity scores, integrating them into the calibration process to overcome sample size limitations. We theoretically demonstrate that, under mild assumptions, SemiCP provide asymptotically coverage guarantee for prediction sets. Extensive experiments further validate that our approach effectively reduces instability and inefficiency under limited calibration data, can be adapted to conditional coverage settings, and integrates seamlessly with existing CP methods.
Abstract:Large language models (LLMs) have shown impressive performance on downstream tasks through in-context learning (ICL), which heavily relies on the demonstrations selected from annotated datasets. Existing selection methods may hinge on the distribution of annotated datasets, which can often be long-tailed in real-world scenarios. In this work, we show that imbalanced class distributions in annotated datasets significantly degrade the performance of ICL across various tasks and selection methods. Moreover, traditional rebalance methods fail to ameliorate the issue of class imbalance in ICL. Our method is motivated by decomposing the distributional differences between annotated and test datasets into two-component weights: class-wise weights and conditional bias. The key idea behind our method is to estimate the conditional bias by minimizing the empirical error on a balanced validation dataset and to employ the two-component weights to modify the original scoring functions during selection. Our approach can prevent selecting too many demonstrations from a single class while preserving the effectiveness of the original selection methods. Extensive experiments demonstrate the effectiveness of our method, improving the average accuracy by up to 5.46 on common benchmarks with imbalanced datasets.
Abstract:Conformal prediction is a popular framework of uncertainty quantification that constructs prediction sets with coverage guarantees. To uphold the exchangeability assumption, many conformal prediction methods necessitate an additional holdout set for parameter tuning. Yet, the impact of violating this principle on coverage remains underexplored, making it ambiguous in practical applications. In this work, we empirically find that the tuning bias - the coverage gap introduced by leveraging the same dataset for tuning and calibration, is negligible for simple parameter tuning in many conformal prediction methods. In particular, we observe the scaling law of the tuning bias: this bias increases with parameter space complexity and decreases with calibration set size. Formally, we establish a theoretical framework to quantify the tuning bias and provide rigorous proof for the scaling law of the tuning bias by deriving its upper bound. In the end, we discuss how to reduce the tuning bias, guided by the theories we developed.
Abstract:Conformal prediction is an emerging technique for uncertainty quantification that constructs prediction sets guaranteed to contain the true label with a predefined probability. Recent work develops online conformal prediction methods that adaptively construct prediction sets to accommodate distribution shifts. However, existing algorithms typically assume perfect label accuracy which rarely holds in practice. In this work, we investigate the robustness of online conformal prediction under uniform label noise with a known noise rate, in both constant and dynamic learning rate schedules. We show that label noise causes a persistent gap between the actual mis-coverage rate and the desired rate $\alpha$, leading to either overestimated or underestimated coverage guarantees. To address this issue, we propose Noise Robust Online Conformal Prediction (dubbed NR-OCP) by updating the threshold with a novel robust pinball los}, which provides an unbiased estimate of clean pinball loss without requiring ground-truth labels. Our theoretical analysis shows that NR-OCP eliminates the coverage gap in both constant and dynamic learning rate schedules, achieving a convergence rate of $\mathcal{O}(T^{-1/2})$ for both empirical and expected coverage errors under uniform label noise. Extensive experiments demonstrate the effectiveness of our method by achieving both precise coverage and improved efficiency.
Abstract:Natural organisms can convert environmental stimuli into sensory feedback to regulate their body and realize active adaptivity. However, realizing such a feedback-regulation mechanism in synthetic material systems remains a grand challenge. It is believed that achieving complex feedback mechanisms in responsive materials will pave the way toward autonomous, intelligent structure and actuation without complex electronics. Inspired by living systems, we report a general principle to design and construct such feedback loops in light-responsive materials. Specifically, we design a baffle-actuator mechanism to incorporate programmed feedback into the opto-mechanical responsiveness. By simply addressing the baffle position with respect to the incident light beam, positive and negative feedback are programmed. We demonstrate the transformation of a light-bending strip into a switcher, where the intensity of light determines the energy barrier under positive feedback, realizing multi-stable shape-morphing. By leveraging the negative feedback and associated homeostasis, we demonstrate two soft robots, i.e., a locomotor and a swimmer. Furthermore, we unveil the ubiquity of feedback in light-responsive materials, which provides new insight into self-regulated robotic matters.
Abstract:Conformal prediction, as an emerging uncertainty quantification technique, typically functions as post-hoc processing for the outputs of trained classifiers. To optimize the classifier for maximum predictive efficiency, Conformal Training rectifies the training objective with a regularization that minimizes the average prediction set size at a specific error rate. However, the regularization term inevitably deteriorates the classification accuracy and leads to suboptimal efficiency of conformal predictors. To address this issue, we introduce \textbf{Conformal Adapter} (C-Adapter), an adapter-based tuning method to enhance the efficiency of conformal predictors without sacrificing accuracy. In particular, we implement the adapter as a class of intra order-preserving functions and tune it with our proposed loss that maximizes the discriminability of non-conformity scores between correctly and randomly matched data-label pairs. Using C-Adapter, the model tends to produce extremely high non-conformity scores for incorrect labels, thereby enhancing the efficiency of prediction sets across different coverage rates. Extensive experiments demonstrate that C-Adapter can effectively adapt various classifiers for efficient prediction sets, as well as enhance the conformal training method.
Abstract:Hyperspectral image (HSI) classification involves assigning specific labels to each pixel to identify various land cover categories. Although deep classifiers have shown high predictive accuracy in this field, quantifying their uncertainty remains a significant challenge, which hinders their application in critical contexts. This study first theoretically evaluates the applicability of \textit{Conformal Prediction} (CP), an emerging technique for uncertainty quantification, in the context of HSI classification. We then propose a conformal procedure that provides HSI classifiers with trustworthy prediction sets, offering coverage guarantees that ensure these sets contain the true labels with a user-specified probability. Building on this foundation, we introduce \textit{Spatial-Aware Conformal Prediction} (\texttt{SACP}), which incorporates essential spatial information inherent in HSIs by aggregating non-conformity scores of pixels with high spatial correlation. Both theoretical and empirical results demonstrate that \texttt{SACP} outperforms standard CP in HSI classification. The source code is accessible at \url{https://github.com/J4ckLiu/SACP}.
Abstract:Feasible solutions are crucial for Integer Programming (IP) since they can substantially speed up the solving process. In many applications, similar IP instances often exhibit similar structures and shared solution distributions, which can be potentially modeled by deep learning methods. Unfortunately, existing deep-learning-based algorithms, such as Neural Diving and Predict-and-search framework, are limited to generating only partial feasible solutions, and they must rely on solvers like SCIP and Gurobi to complete the solutions for a given IP problem. In this paper, we propose a novel framework that generates complete feasible solutions end-to-end. Our framework leverages contrastive learning to characterize the relationship between IP instances and solutions, and learns latent embeddings for both IP instances and their solutions. Further, the framework employs diffusion models to learn the distribution of solution embeddings conditioned on IP representations, with a dedicated guided sampling strategy that accounts for both constraints and objectives. We empirically evaluate our framework on four typical datasets of IP problems, and show that it effectively generates complete feasible solutions with a high probability (> 89.7 \%) without the reliance of Solvers and the quality of solutions is comparable to the best heuristic solutions from Gurobi. Furthermore, by integrating our method's sampled partial solutions with the CompleteSol heuristic from SCIP, the resulting feasible solutions outperform those from state-of-the-art methods across all datasets, exhibiting a 3.7 to 33.7\% improvement in the gap to optimal values, and maintaining a feasible ratio of over 99.7\% for all datasets.
Abstract:This work proposes a novel face-swapping framework FlowFace++, utilizing explicit semantic flow supervision and end-to-end architecture to facilitate shape-aware face-swapping. Specifically, our work pretrains a facial shape discriminator to supervise the face swapping network. The discriminator is shape-aware and relies on a semantic flow-guided operation to explicitly calculate the shape discrepancies between the target and source faces, thus optimizing the face swapping network to generate highly realistic results. The face swapping network is a stack of a pre-trained face-masked autoencoder (MAE), a cross-attention fusion module, and a convolutional decoder. The MAE provides a fine-grained facial image representation space, which is unified for the target and source faces and thus facilitates final realistic results. The cross-attention fusion module carries out the source-to-target face swapping in a fine-grained latent space while preserving other attributes of the target image (e.g. expression, head pose, hair, background, illumination, etc). Lastly, the convolutional decoder further synthesizes the swapping results according to the face-swapping latent embedding from the cross-attention fusion module. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace++ outperforms the state-of-the-art significantly, particularly while the source face is obstructed by uneven lighting or angle offset.