Abstract:Conformal Prediction (CP) provides a statistical framework for uncertainty quantification that constructs prediction sets with coverage guarantees. While CP yields uncontrolled prediction set sizes, Backward Conformal Prediction (BCP) inverts this paradigm by enforcing a predefined upper bound on set size and estimating the resulting coverage guarantee. However, the looseness induced by Markov's inequality within the BCP framework causes a significant gap between the estimated coverage bound and the empirical coverage. In this work, we introduce ST-BCP, a novel method that introduces a data-dependent transformation of nonconformity scores to narrow the coverage gap. In particular, we develop a computable transformation and prove that it outperforms the baseline identity transformation. Extensive experiments demonstrate the effectiveness of our method, reducing the average coverage gap from 4.20\% to 1.12\% on common benchmarks.
Abstract:The growing prevalence of unauthorized model usage and misattribution has increased the need for reliable model provenance analysis. However, existing methods largely rely on heuristic fingerprint-matching rules that lack provable error control and often overlook the existence of multiple sources, leaving the reliability of their provenance claims unverified. In this work, we first formalize the model provenance problem with provable guarantees, requiring rigorous coverage of all true provenances at a prescribed confidence level. Then, we propose the Model Provenance Set (MPS), which employs a sequential test-and-exclusion procedure to adaptively construct a small set satisfying the guarantee. The key idea of MPS is to test the significance of provenance existence within a candidate pool, thereby establishing a provable asymptotic guarantee at a user-specific confidence level. Extensive experiments demonstrate that MPS effectively achieves target provenance coverage while strictly limiting the inclusion of unrelated models, and further reveal its potential for practical provenance analysis in attribution and auditing tasks.
Abstract:Incorporating Machine Learning (ML) into material property prediction has become a crucial step in accelerating materials discovery. A key challenge is the severe lack of training data, as many properties are too complicated to calculate with high-throughput first principles techniques. To address this, recent research has created experimental databases from information extracted from scientific literature. However, most existing experimental databases do not provide full atomic coordinate information, which prevents them from supporting advanced ML architectures such as Graph Neural Networks (GNNs). In this work, we propose to bridge this gap through an alignment process between experimental databases and Crystallographic Information Files (CIF) from the Inorganic Crystal Structure Database (ICSD). Our approach enables the creation of a database that can fully leverage state-of-the-art model architectures for material property prediction. It also opens the door to utilizing transfer learning to improve prediction accuracy. To validate our approach, we align NEMAD with the ICSD and compare models trained on the resulting database to those trained on NEMAD originally. We demonstrate significant improvements in both Mean Absolute Error (MAE) and Correct Classification Rate (CCR) in predicting the ordering temperatures and magnetic ground states of magnetic materials, respectively.
Abstract:Large reasoning models have shown strong performance through extended chain-of-thought reasoning, yet their computational cost remains significant. Probably approximately correct (PAC) reasoning provides statistical guarantees for efficient reasoning by adaptively switching between thinking and non-thinking models, but the guarantee holds only in the marginal case and does not provide exact conditional coverage. We propose G-PAC reasoning, a practical framework that provides PAC-style guarantees at the group level by partitioning the input space. We develop two instantiations: Group PAC (G-PAC) reasoning for known group structures and Clustered PAC (C-PAC) reasoning for unknown groupings. We prove that both G-PAC and C-PAC achieve group-conditional risk control, and that grouping can strictly improve efficiency over marginal PAC reasoning in heterogeneous settings. Our experiments on diverse reasoning benchmarks demonstrate that G-PAC and C-PAC successfully achieve group-conditional risk control while maintaining substantial computational savings.
Abstract:Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex tasks but suffer from high computational costs and latency. While selective thinking strategies improve efficiency by routing easy queries to non-thinking models, existing approaches often incur uncontrollable errors, especially in online settings where the performance loss of a non-thinking model is only partially observed and data are non-stationary. To address this, we propose Betting Probably Approximately Correct (B-PAC) reasoning, a principled method that enables anytime safe and efficient online reasoning under partial feedback. Specifically, we utilize inverse propensity scoring estimators to construct test supermartingales for candidate thresholds, and then dynamically adjust the routing threshold based on the accumulated statistical evidence of safety. Theoretically, we establish the anytime-valid performance loss control and the efficiency of B-PAC reasoning. Extensive experiments demonstrate that B-PAC reasoning significantly reduces computational overhead, decreasing thinking model usage by up to 81.01\%, while controlling the performance loss below the user-specified level.
Abstract:Quantifying uncertainty is critical for the safe deployment of ranking models in real-world applications. Recent work offers a rigorous solution using conformal prediction in a full ranking scenario, which aims to construct prediction sets for the absolute ranks of test items based on the relative ranks of calibration items. However, relying on upper bounds of non-conformity scores renders the method overly conservative, resulting in substantially large prediction sets. To address this, we propose Distribution-informed Conformal Ranking (DCR), which produces efficient prediction sets by deriving the exact distribution of non-conformity scores. In particular, we find that the absolute ranks of calibration items follow Negative Hypergeometric distributions, conditional on their relative ranks. DCR thus uses the rank distribution to derive non-conformity score distribution and determine conformal thresholds. We provide theoretical guarantees that DCR achieves improved efficiency over the baseline while ensuring valid coverage under mild assumptions. Extensive experiments demonstrate the superiority of DCR, reducing average prediction set size by up to 36%, while maintaining valid coverage.
Abstract:Data annotation often involves multiple sources with different cost-quality trade-offs, such as fast large language models (LLMs), slow reasoning models, and human experts. In this work, we study the problem of routing inputs to the most cost-efficient annotation source while controlling the labeling error on test instances. We propose \textbf{HyPAC}, a method that adaptively labels inputs to the most cost-efficient annotation source while providing distribution-free guarantees on annotation error. HyPAC calibrates two decision thresholds using importance sampling and upper confidence bounds, partitioning inputs into three regions based on uncertainty and routing each to the appropriate annotation source. We prove that HyPAC achieves the minimum expected cost with a probably approximately correct (PAC) guarantee on the annotation error, free of data distribution and pre-trained models. Experiments on common benchmarks demonstrate the effectiveness of our method, reducing the annotation cost by 78.51\% while tightly controlling the annotation error.
Abstract:We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
Abstract:Spiking Neural Networks (SNNs) offer a biologically plausible framework for energy-efficient neuromorphic computing. However, it is a challenge to train SNNs due to their non-differentiability, efficiently. Existing gradient approximation approaches frequently sacrifice accuracy and face deployment limitations on edge devices due to the substantial computational requirements of backpropagation. To address these challenges, we propose a Forward-Forward (FF) based gradient approximation-free training framework for Spiking Neural Networks, which treats spiking activations as black-box modules, thereby eliminating the need for gradient approximation while significantly reducing computational complexity. Furthermore, we introduce a class-aware complexity adaptation mechanism that dynamically optimizes the loss function based on inter-class difficulty metrics, enabling efficient allocation of network resources across different categories. Experimental results demonstrate that our proposed training framework achieves test accuracies of 99.58%, 92.13%, and 75.64% on the MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively, surpassing all existing FF-based SNN approaches. Additionally, our proposed method exhibits significant advantages in terms of memory access and computational power consumption.
Abstract:LoRa is a widely recognized modulation technology in the field of low power wide area networks (LPWANs). However, the data rate of LoRa is too low to satisfy the requirements in the context of modern Internet of Things (IoT) applications. To address this issue, we propose a novel high-data-rate LoRa scheme based on the spreading factor index (SFI). In the proposed SFI-LoRa scheme, the starting frequency bin (SFB) of chirp signals is used to transmit information bits, while the combinations of spreading factors (SFs) are exploited as a set of indices to convey additional information bits. Moreover, theoretical expressions for the symbol error rate (SER) and throughput of the proposed SFI-LoRa scheme are derived over additive white Gaussian noise (AWGN) and Rayleigh fading channels. Simulation results not only verify the accuracy of the theoretical analysis, but also demonstrate that the proposed SFI-LoRa scheme improves both the bit error rate (BER) and throughput performance compared to existing high-data-rate LoRa schemes. Therefore, the proposed SFI-LoRa scheme is a potential solution for applications requiring a high data rate in the LPWAN domain.