Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina, Yuandong Tian

Recent works in learning-integrated optimization have shown promise in settings where the optimization problem is only partially observed or where general-purpose optimizers perform poorly without expert tuning. By learning an optimizer $\mathbf{g}$ to tackle these challenging problems with $f$ as the objective, the optimization process can be substantially accelerated by leveraging past experience. The optimizer can be trained with supervision from known optimal solutions or implicitly by optimizing the compound function $f\circ \mathbf{g}$. The implicit approach may not require optimal solutions as labels and is capable of handling problem uncertainty; however, it is slow to train and deploy due to frequent calls to optimizer $\mathbf{g}$ during both training and testing. The training is further challenged by sparse gradients of $\mathbf{g}$, especially for combinatorial solvers. To address these challenges, we propose using a smooth and learnable Landscape Surrogate $M$ as a replacement for $f\circ \mathbf{g}$. This surrogate, learnable by neural networks, can be computed faster than the solver $\mathbf{g}$, provides dense and smooth gradients during training, can generalize to unseen optimization problems, and is efficiently learned via alternating optimization. We test our approach on both synthetic problems, including shortest path and multidimensional knapsack, and real-world problems such as portfolio optimization, achieving comparable or superior objective values compared to state-of-the-art baselines while reducing the number of calls to $\mathbf{g}$. Notably, our approach outperforms existing methods for computationally expensive high-dimensional problems.

Via

Burak Bartan, Haoming Li, Harris Teague, Christopher Lott, Bistra Dilkina

The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called \textsc{Moccasin} with only $O(n)$ integer variables, where $n$ is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with $O(n^2)$ Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs.

Via

John Dickerson, Bistra Dilkina, Yu Ding, Swati Gupta, Pascal Van Hentenryck, Sven Koenig, Ramayya Krishnan, Radhika Kulkarni, Catherine Gill, Haley Griffin, Maddy Hunter, Ann Schwartz

This workshop Report Out focuses on the foundational elements of trustworthy AI and OR technology, and how to ensure all AI and OR systems implement these elements in their system designs. Four sessions on various topics within Trustworthy AI were held, these being Fairness, Explainable AI/Causality, Robustness/Privacy, and Human Alignment and Human-Computer Interaction. Following discussions of each of these topics, workshop participants also brainstormed challenge problems which require the collaboration of AI and OR researchers and will result in the integration of basic techniques from both fields to eventually benefit societal needs.

Via

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, Benoit Steiner

Integer Linear Programs (ILPs) are powerful tools for modeling and solving a large number of combinatorial optimization problems. Recently, it has been shown that Large Neighborhood Search (LNS), as a heuristic algorithm, can find high quality solutions to ILPs faster than Branch and Bound. However, how to find the right heuristics to maximize the performance of LNS remains an open problem. In this paper, we propose a novel approach, CL-LNS, that delivers state-of-the-art anytime performance on several ILP benchmarks measured by metrics including the primal gap, the primal integral, survival rates and the best performing rate. Specifically, CL-LNS collects positive and negative solution samples from an expert heuristic that is slow to compute and learns a new one with a contrastive loss. We use graph attention networks and a richer set of features to further improve its performance.

Via

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, Benoit Steiner

Large Neighborhood Search (LNS) is a popular heuristic algorithm for solving combinatorial optimization problems (COP). It starts with an initial solution to the problem and iteratively improves it by searching a large neighborhood around the current best solution. LNS relies on heuristics to select neighborhoods to search in. In this paper, we focus on designing effective and efficient heuristics in LNS for integer linear programs (ILP) since a wide range of COPs can be represented as ILPs. Local Branching (LB) is a heuristic that selects the neighborhood that leads to the largest improvement over the current solution in each iteration of LNS. LB is often slow since it needs to solve an ILP of the same size as input. Our proposed heuristics, LB-RELAX and its variants, use the linear programming relaxation of LB to select neighborhoods. Empirically, LB-RELAX and its variants compute as effective neighborhoods as LB but run faster. They achieve state-of-the-art anytime performance on several ILP benchmarks.

Via

Aaron Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina, Yuandong Tian

Optimization problems with expensive nonlinear cost functions and combinatorial constraints appear in many real-world applications, but remain challenging to solve efficiently. Existing combinatorial solvers like Mixed Integer Linear Programming can be fast in practice but cannot readily optimize nonlinear cost functions, while general nonlinear optimizers like gradient descent often do not handle complex combinatorial structures, may require many queries of the cost function, and are prone to local optima. To bridge this gap, we propose SurCo that learns linear Surrogate costs which can be used by existing Combinatorial solvers to output good solutions to the original nonlinear combinatorial optimization problem, combining the flexibility of gradient-based methods with the structure of linear combinatorial optimization. We learn these linear surrogates end-to-end with the nonlinear loss by differentiating through the linear surrogate solver. Three variants of SurCo are proposed: SurCo-zero operates on individual nonlinear problems, SurCo-prior trains a linear surrogate predictor on distributions of problems, and SurCo-hybrid uses a model trained offline to warm start online solving for SurCo-zero. We analyze our method theoretically and empirically, showing smooth convergence and improved performance. Experiments show that compared to state-of-the-art approaches and expert-designed heuristics, SurCo obtains lower cost solutions with comparable or faster solve time for two realworld industry-level applications: embedding table sharding and inverse photonic design.

Via

Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina

In Mixed Integer Linear Programming (MIP), a (strong) backdoor is a "small" subset of an instance's integer variables with the following property: in a branch-and-bound procedure, the instance can be solved to global optimality by branching only on the variables in the backdoor. Constructing datasets of pre-computed backdoors for widely used MIP benchmark sets or particular problem families can enable new questions around novel structural properties of a MIP, or explain why a problem that is hard in theory can be solved efficiently in practice. Existing algorithms for finding backdoors rely on sampling candidate variable subsets in various ways, an approach which has demonstrated the existence of backdoors for some instances from MIPLIB2003 and MIPLIB2010. However, these algorithms fall short of consistently succeeding at the task due to an imbalance between exploration and exploitation. We propose BaMCTS, a Monte Carlo Tree Search framework for finding backdoors to MIPs. Extensive algorithmic engineering, hybridization with traditional MIP concepts, and close integration with the CPLEX solver have enabled our method to outperform baselines on MIPLIB2017 instances, finding backdoors more frequently and more efficiently.

Via

Kai Wang, Bryan Wilder, Sze-chuan Suen, Bistra Dilkina, Milind Tambe

There is significant interest in learning and optimizing a complex system composed of multiple sub-components, where these components may be agents or autonomous sensors. Among the rich literature on this topic, agent-based and domain-specific simulations can capture complex dynamics and subgroup interaction, but optimizing over such simulations can be computationally and algorithmically challenging. Bayesian approaches, such as Gaussian processes (GPs), can be used to learn a computationally tractable approximation to the underlying dynamics but typically neglect the detailed information about subgroups in the complicated system. We attempt to find the best of both worlds by proposing the idea of decomposed feedback, which captures group-based heterogeneity and dynamics. We introduce a novel decomposed GP regression to incorporate the subgroup decomposed feedback. Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches; it also allows us to introduce a decomposed GP-UCB optimization algorithm that leverages subgroup feedback. The Bayesian nature of our method makes the optimization algorithm trackable with a theoretical guarantee on convergence and no-regret property. To demonstrate the wide applicability of this work, we execute our algorithm on two disparate social problems: infectious disease control in a heterogeneous population and allocation of distributed weather sensors. Experimental results show that our new method provides significant improvement compared to the state-of-the-art.

Via

Aaron Ferber, Jialin Song, Bistra Dilkina, Yisong Yue

We propose a machine learning approach for quickly solving Mixed Integer Programs (MIP) by learning to prioritize a set of decision variables, which we call pseudo-backdoors, for branching that results in faster solution times. Learning-based approaches have seen success in the area of solving combinatorial optimization problems by being able to flexibly leverage common structures in a given distribution of problems. Our approach takes inspiration from the concept of strong backdoors, which corresponds to a small set of variables such that only branching on these variables yields an optimal integral solution and a proof of optimality. Our notion of pseudo-backdoors corresponds to a small set of variables such that only branching on them leads to faster solve time (which can be solver dependent). A key advantage of pseudo-backdoors over strong backdoors is that they are much amenable to data-driven identification or prediction. Our proposed method learns to estimate the solver performance of a proposed pseudo-backdoor, using a labeled dataset collected on a set of training MIP instances. This model can then be used to identify high-quality pseudo-backdoors on new MIP instances from the same distribution. We evaluate our method on the generalized independent set problems and find that our approach can efficiently identify high-quality pseudo-backdoors. In addition, we compare our learned approach against Gurobi, a state-of-the-art MIP solver, demonstrating that our method can be used to improve solver performance.

Via

Umang Gupta, Aaron Ferber, Bistra Dilkina, Greg Ver Steeg

Controlling bias in training datasets is vital for ensuring equal treatment, or parity, between different groups in downstream applications. A naive solution is to transform the data so that it is statistically independent of group membership, but this may throw away too much information when a reasonable compromise between fairness and accuracy is desired. Another common approach is to limit the ability of a particular adversary who seeks to maximize parity. Unfortunately, representations produced by adversarial approaches may still retain biases as their efficacy is tied to the complexity of the adversary used during training. To this end, we theoretically establish that by limiting the mutual information between representations and protected attributes, we can assuredly control the parity of any downstream classifier. We demonstrate an effective method for controlling parity through mutual information based on contrastive information estimators and show that they outperform approaches that rely on variational bounds based on complex generative models. We test our approach on UCI Adult and Heritage Health datasets and demonstrate that our approach provides more informative representations across a range of desired parity thresholds while providing strong theoretical guarantees on the parity of any downstream algorithm.

Via