Abstract:As we all know, multi-view data is more expressive than single-view data and multi-label annotation enjoys richer supervision information than single-label, which makes multi-view multi-label learning widely applicable for various pattern recognition tasks. In this complex representation learning problem, three main challenges can be characterized as follows: i) How to learn consistent representations of samples across all views? ii) How to exploit and utilize category correlations of multi-label to guide inference? iii) How to avoid the negative impact resulting from the incompleteness of views or labels? To cope with these problems, we propose a general multi-view multi-label learning framework named label-guided masked view- and category-aware transformers in this paper. First, we design two transformer-style based modules for cross-view features aggregation and multi-label classification, respectively. The former aggregates information from different views in the process of extracting view-specific features, and the latter learns subcategory embedding to improve classification performance. Second, considering the imbalance of expressive power among views, an adaptively weighted view fusion module is proposed to obtain view-consistent embedding features. Third, we impose a label manifold constraint in sample-level representation learning to maximize the utilization of supervised information. Last but not least, all the modules are designed under the premise of incomplete views and labels, which makes our method adaptable to arbitrary multi-view and multi-label data. Extensive experiments on five datasets confirm that our method has clear advantages over other state-of-the-art methods.
Abstract:Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured data in recommender systems. However, real-life recommendation scenarios usually involve heterogeneous relationships (e.g., social-aware user influence, knowledge-aware item dependency) which contains fruitful information to enhance the user preference learning. In this paper, we study the problem of heterogeneous graph-enhanced relational learning for recommendation. Recently, contrastive self-supervised learning has become successful in recommendation. In light of this, we propose a Heterogeneous Graph Contrastive Learning (HGCL), which is able to incorporate heterogeneous relational semantics into the user-item interaction modeling with contrastive learning-enhanced knowledge transfer across different views. However, the influence of heterogeneous side information on interactions may vary by users and items. To move this idea forward, we enhance our heterogeneous graph contrastive learning with meta networks to allow the personalized knowledge transformer with adaptive contrastive augmentation. The experimental results on three real-world datasets demonstrate the superiority of HGCL over state-of-the-art recommendation methods. Through ablation study, key components in HGCL method are validated to benefit the recommendation performance improvement. The source code of the model implementation is available at the link https://github.com/HKUDS/HGCL.
Abstract:Recommender systems have been demonstrated to be effective to meet user's personalized interests for many online services (e.g., E-commerce and online advertising platforms). Recent years have witnessed the emerging success of many deep learning-based recommendation models for augmenting collaborative filtering architectures with various neural network architectures, such as multi-layer perceptron and autoencoder. However, the majority of them model the user-item relationship with single type of interaction, while overlooking the diversity of user behaviors on interacting with items, which can be click, add-to-cart, tag-as-favorite and purchase. Such various types of interaction behaviors have great potential in providing rich information for understanding the user preferences. In this paper, we pay special attention on user-item relationships with the exploration of multi-typed user behaviors. Technically, we contribute a new multi-behavior graph neural network (MBRec), which specially accounts for diverse interaction patterns as well as the underlying cross-type behavior inter-dependencies. In the MBRec framework, we develop a graph-structured learning framework to perform expressive modeling of high-order connectivity in behavior-aware user-item interaction graph. After that, a mutual relation encoder is proposed to adaptively uncover complex relational structures and make aggregations across layer-specific behavior representations. Through comprehensive evaluation on real-world datasets, the advantages of our MBRec method have been validated under different experimental settings. Further analysis verifies the positive effects of incorporating the multi-behavioral context into the recommendation paradigm. Additionally, the conducted case studies offer insights into the interpretability of user multi-behavior representations.
Abstract:Over the past few years, developing a broad, universal, and general-purpose computer vision system has become a hot topic. A powerful universal system would be capable of solving diverse vision tasks simultaneously without being restricted to a specific problem or a specific data domain, which is of great importance in practical real-world computer vision applications. This study pushes the direction forward by concentrating on the million-scale multi-domain universal object detection problem. The problem is not trivial due to its complicated nature in terms of cross-dataset category label duplication, label conflicts, and the hierarchical taxonomy handling. Moreover, what is the resource-efficient way to utilize emerging large pre-trained vision models for million-scale cross-dataset object detection remains an open challenge. This paper tries to address these challenges by introducing our practices in label handling, hierarchy-aware loss design and resource-efficient model training with a pre-trained large model. Our method is ranked second in the object detection track of Robust Vision Challenge 2022 (RVC 2022). We hope our detailed study would serve as an alternative practice paradigm for similar problems in the community. The code is available at https://github.com/linfeng93/Large-UniDet.
Abstract:Point clouds captured by scanning devices are often incomplete due to occlusion. Point cloud completion aims to predict the complete shape based on its partial input. Existing methods can be classified into supervised and unsupervised methods. However, both of them require a large number of 3D complete point clouds, which are difficult to capture. In this paper, we propose Cross-PCC, an unsupervised point cloud completion method without requiring any 3D complete point clouds. We only utilize 2D images of the complete objects, which are easier to capture than 3D complete and clean point clouds. Specifically, to take advantage of the complementary information from 2D images, we use a single-view RGB image to extract 2D features and design a fusion module to fuse the 2D and 3D features extracted from the partial point cloud. To guide the shape of predicted point clouds, we project the predicted points of the object to the 2D plane and use the foreground pixels of its silhouette maps to constrain the position of the projected points. To reduce the outliers of the predicted point clouds, we propose a view calibrator to move the points projected to the background into the foreground by the single-view silhouette image. To the best of our knowledge, our approach is the first point cloud completion method that does not require any 3D supervision. The experimental results of our method are superior to those of the state-of-the-art unsupervised methods by a large margin. Moreover, compared to some supervised methods, our method achieves similar performance. We will make the source code publicly available at https://github.com/ltwu6/cross-pcc.
Abstract:While current deep learning (DL)-based beamforming techniques have been proved effective in speech separation, they are often designed to process narrow-band (NB) frequencies independently which results in higher computational costs and inference times, making them unsuitable for real-world use. In this paper, we propose DL-based mel-subband spatio-temporal beamformer to perform speech separation in a car environment with reduced computation cost and inference time. As opposed to conventional subband (SB) approaches, our framework uses a mel-scale based subband selection strategy which ensures a fine-grained processing for lower frequencies where most speech formant structure is present, and coarse-grained processing for higher frequencies. In a recursive way, robust frame-level beamforming weights are determined for each speaker location/zone in a car from the estimated subband speech and noise covariance matrices. Furthermore, proposed framework also estimates and suppresses any echoes from the loudspeaker(s) by using the echo reference signals. We compare the performance of our proposed framework to several NB, SB, and full-band (FB) processing techniques in terms of speech quality and recognition metrics. Based on experimental evaluations on simulated and real-world recordings, we find that our proposed framework achieves better separation performance over all SB and FB approaches and achieves performance closer to NB processing techniques while requiring lower computing cost.
Abstract:Speech emotion recognition (SER) plays a vital role in improving the interactions between humans and machines by inferring human emotion and affective states from speech signals. Whereas recent works primarily focus on mining spatiotemporal information from hand-crafted features, we explore how to model the temporal patterns of speech emotions from dynamic temporal scales. Towards that goal, we introduce a novel temporal emotional modeling approach for SER, termed Temporal-aware bI-direction Multi-scale Network (TIM-Net), which learns multi-scale contextual affective representations from various time scales. Specifically, TIM-Net first employs temporal-aware blocks to learn temporal affective representation, then integrates complementary information from the past and the future to enrich contextual representations, and finally, fuses multiple time scale features for better adaptation to the emotional variation. Extensive experimental results on six benchmark SER datasets demonstrate the superior performance of TIM-Net, gaining 2.34% and 2.61% improvements of the average UAR and WAR over the second-best on each corpus. Remarkably, TIM-Net outperforms the latest domain-adaptation method on the cross-corpus SER tasks, demonstrating strong generalizability.
Abstract:In human-computer interaction, Speech Emotion Recognition (SER) plays an essential role in understanding the user's intent and improving the interactive experience. While similar sentimental speeches own diverse speaker characteristics but share common antecedents and consequences, an essential challenge for SER is how to produce robust and discriminative representations through causality between speech emotions. In this paper, we propose a Gated Multi-scale Temporal Convolutional Network (GM-TCNet) to construct a novel emotional causality representation learning component with a multi-scale receptive field. GM-TCNet deploys a novel emotional causality representation learning component to capture the dynamics of emotion across the time domain, constructed with dilated causal convolution layer and gating mechanism. Besides, it utilizes skip connection fusing high-level features from different gated convolution blocks to capture abundant and subtle emotion changes in human speech. GM-TCNet first uses a single type of feature, mel-frequency cepstral coefficients, as inputs and then passes them through the gated temporal convolutional module to generate the high-level features. Finally, the features are fed to the emotion classifier to accomplish the SER task. The experimental results show that our model maintains the highest performance in most cases compared to state-of-the-art techniques.
Abstract:Open-set semi-supervised learning (OSSL) has attracted growing interest, which investigates a more practical scenario where out-of-distribution (OOD) samples are only contained in unlabeled data. Existing OSSL methods like OpenMatch learn an OOD detector to identify outliers, which often update all modal parameters (i.e., full fine-tuning) to propagate class information from labeled data to unlabeled ones. Currently, prompt learning has been developed to bridge gaps between pre-training and fine-tuning, which shows higher computational efficiency in several downstream tasks. In this paper, we propose a prompt-driven efficient OSSL framework, called OpenPrompt, which can propagate class information from labeled to unlabeled data with only a small number of trainable parameters. We propose a prompt-driven joint space learning mechanism to detect OOD data by maximizing the distribution gap between ID and OOD samples in unlabeled data, thereby our method enables the outliers to be detected in a new way. The experimental results on three public datasets show that OpenPrompt outperforms state-of-the-art methods with less than 1% of trainable parameters. More importantly, OpenPrompt achieves a 4% improvement in terms of AUROC on outlier detection over a fully supervised model on CIFAR10.
Abstract:Conventional multi-view clustering seeks to partition data into respective groups based on the assumption that all views are fully observed. However, in practical applications, such as disease diagnosis, multimedia analysis, and recommendation system, it is common to observe that not all views of samples are available in many cases, which leads to the failure of the conventional multi-view clustering methods. Clustering on such incomplete multi-view data is referred to as incomplete multi-view clustering. In view of the promising application prospects, the research of incomplete multi-view clustering has noticeable advances in recent years. However, there is no survey to summarize the current progresses and point out the future research directions. To this end, we review the recent studies of incomplete multi-view clustering. Importantly, we provide some frameworks to unify the corresponding incomplete multi-view clustering methods, and make an in-depth comparative analysis for some representative methods from theoretical and experimental perspectives. Finally, some open problems in the incomplete multi-view clustering field are offered for researchers.