Abstract:Referring Multi-object tracking (RMOT) is an important research field in computer vision. Its task form is to guide the models to track the objects that conform to the language instruction. However, the RMOT task commonly requires clear language instructions, such methods often fail to work when complex language instructions with reasoning characteristics appear. In this work, we propose a new task, called Reasoning-based Multi-Object Tracking (ReaMOT). ReaMOT is a more challenging task that requires accurate reasoning about objects that match the language instruction with reasoning characteristic and tracking the objects' trajectories. To advance the ReaMOT task and evaluate the reasoning capabilities of tracking models, we construct ReaMOT Challenge, a reasoning-based multi-object tracking benchmark built upon 12 datasets. Specifically, it comprises 1,156 language instructions with reasoning characteristic, 423,359 image-language pairs, and 869 diverse scenes, which is divided into three levels of reasoning difficulty. In addition, we propose a set of evaluation metrics tailored for the ReaMOT task. Furthermore, we propose ReaTrack, a training-free framework for reasoning-based multi-object tracking based on large vision-language models (LVLM) and SAM2, as a baseline for the ReaMOT task. Extensive experiments on the ReaMOT Challenge benchmark demonstrate the effectiveness of our ReaTrack framework.
Abstract:Malicious URLs persistently threaten the cybersecurity ecosystem, by either deceiving users into divulging private data or distributing harmful payloads to infiltrate host systems. Gaining timely insights into the current state of this ongoing battle holds significant importance. However, existing reviews exhibit 4 critical gaps: 1) Their reliance on algorithm-centric taxonomies obscures understanding of how detection approaches exploit specific modal information channels; 2) They fail to incorporate pivotal LLM/Transformer-based defenses; 3) No open-source implementations are collected to facilitate benchmarking; 4) Insufficient dataset coverage.This paper presents a comprehensive review of malicious URL detection technologies, systematically analyzing methods from traditional blacklisting to advanced deep learning approaches (e.g. Transformer, GNNs, and LLMs). Unlike prior surveys, we propose a novel modality-based taxonomy that categorizes existing works according to their primary data modalities (URL, HTML, Visual, etc.). This hierarchical classification enables both rigorous technical analysis and clear understanding of multimodal information utilization. Furthermore, to establish a profile of accessible datasets and address the lack of standardized benchmarking (where current studies often lack proper baseline comparisons), we curate and analyze: 1) publicly available datasets (2016-2024), and 2) open-source implementations from published works(2013-2025). Then, we outline essential design principles and architectural frameworks for product-level implementations. The review concludes by examining emerging challenges and proposing actionable directions for future research. We maintain a GitHub repository for ongoing curating datasets and open-source implementations: https://github.com/sevenolu7/Malicious-URL-Detection-Open-Source/tree/master.