Centre for Health Informatics, Macquarie University, Sydney, Australia
Abstract:Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2\% in the Dice Similarity Coefficient across various tumor regions. Our code is available at ReHyDIL.
Abstract:Deep neural networks (DNNs) have exhibited remarkable success in the field of histopathology image analysis. On the other hand, the contemporary trend of employing large models and extensive datasets has underscored the significance of dataset distillation, which involves compressing large-scale datasets into a condensed set of synthetic samples, offering distinct advantages in improving training efficiency and streamlining downstream applications. In this work, we introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD), which integrates stain normalisation and model augmentation into the distillation progress. Such integration can substantially enhance the compatibility with histopathology images that are often characterised by high colour heterogeneity. We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks. The experimental results, carried out on three publicly available WSI datasets, including Camelyon16, TCGA-IDH, and UniToPath, demonstrate that the proposed Histo-DD can generate more informative synthetic patches than previous coreset selection and patch sampling methods. Moreover, the synthetic samples can preserve discriminative information, substantially reduce training efforts, and exhibit architecture-agnostic properties. These advantages indicate that synthetic samples can serve as an alternative to large-scale datasets.