Abstract:Bearing-only tracking, localisation, and circumnavigation is a problem in which a single or a group of agents attempts to track a target while circumnavigating it at a fixed distance using only bearing measurements. While previous studies have addressed scenarios involving stationary targets or those moving with an unknown constant velocity, the challenge of accurately tracking a target moving with a time-varying velocity remains open. This paper presents an approach utilising a Long Short-Term Memory (LSTM) based estimator for predicting the target's position and velocity. We also introduce a corresponding control strategy. When evaluated against previously proposed estimation and circumnavigation approaches, our approach demonstrates significantly lower control and estimation errors across various time-varying velocity scenarios. Additionally, we illustrate the effectiveness of the proposed method in tracking targets with a double integrator nonholonomic system dynamics that mimic real-world systems.