June
Abstract:To manage and optimize constantly evolving wireless networks, existing machine learning (ML)- based studies operate as black-box models, leading to increased computational costs during training and a lack of transparency in decision-making, which limits their practical applicability in wireless networks. Motivated by recent advancements in large language model (LLM)-enabled wireless networks, this paper proposes ProWin, a novel framework that leverages reinforced in-context learning to design task-specific demonstration Prompts for Wireless Network optimization, relying on the inference capabilities of LLMs without the need for dedicated model training or finetuning. The task-specific prompts are designed to incorporate natural language descriptions of the task description and formulation, enhancing interpretability and eliminating the need for specialized expertise in network optimization. We further propose a reinforced in-context learning scheme that incorporates a set of advisable examples into task-specific prompts, wherein informative examples capturing historical environment states and decisions are adaptively selected to guide current decision-making. Evaluations on a case study of base station power control showcases that the proposed ProWin outperforms reinforcement learning (RL)-based methods, highlighting the potential for next-generation future wireless network optimization.
Abstract:Knowledge understanding is a foundational part of envisioned 6G networks to advance network intelligence and AI-native network architectures. In this paradigm, information extraction plays a pivotal role in transforming fragmented telecom knowledge into well-structured formats, empowering diverse AI models to better understand network terminologies. This work proposes a novel language model-based information extraction technique, aiming to extract structured entities from the telecom context. The proposed telecom structured entity extraction (TeleSEE) technique applies a token-efficient representation method to predict entity types and attribute keys, aiming to save the number of output tokens and improve prediction accuracy. Meanwhile, TeleSEE involves a hierarchical parallel decoding method, improving the standard encoder-decoder architecture by integrating additional prompting and decoding strategies into entity extraction tasks. In addition, to better evaluate the performance of the proposed technique in the telecom domain, we further designed a dataset named 6GTech, including 2390 sentences and 23747 words from more than 100 6G-related technical publications. Finally, the experiment shows that the proposed TeleSEE method achieves higher accuracy than other baseline techniques, and also presents 5 to 9 times higher sample processing speed.
Abstract:The rapid evolution of the transportation cybersecurity ecosystem, encompassing cybersecurity, automotive, and transportation and logistics sectors, will lead to the formation of distinct spatial clusters and visitor flow patterns across the US. This study examines the spatiotemporal dynamics of visitor flows, analyzing how socioeconomic factors shape industry clustering and workforce distribution within these evolving sectors. To model and predict visitor flow patterns, we develop a BiTransGCN framework, integrating an attention-based Transformer architecture with a Graph Convolutional Network backbone. By integrating AI-enabled forecasting techniques with spatial analysis, this study improves our ability to track, interpret, and anticipate changes in industry clustering and mobility trends, thereby supporting strategic planning for a secure and resilient transportation network. It offers a data-driven foundation for economic planning, workforce development, and targeted investments in the transportation cybersecurity ecosystem.
Abstract:We introduce a novel framework for simulating finite automata using representation-theoretic semidirect products and Fourier modules, achieving more efficient Transformer-based implementations.
Abstract:A widely used Agile practice for requirements is to produce a set of user stories (also called ``agile product backlog''), which roughly includes a list of pairs (role, feature), where the role handles the feature for a certain purpose. In the context of Software Product Lines, the requirements for a family of similar systems is thus a family of user-story sets, one per system, leading to a 3-dimensional dataset composed of sets of triples (system, role, feature). In this paper, we combine Triadic Concept Analysis (TCA) and Large Language Model (LLM) prompting to suggest the user-story set required to develop a new system relying on the variability logic of an existing system family. This process consists in 1) computing 3-dimensional variability expressed as a set of TCA implications, 2) providing the designer with intelligible design options, 3) capturing the designer's selection of options, 4) proposing a first user-story set corresponding to this selection, 5) consolidating its validity according to the implications identified in step 1, while completing it if necessary, and 6) leveraging LLM to have a more comprehensive website. This process is evaluated with a dataset comprising the user-story sets of 67 similar-purpose websites.
Abstract:Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks. However, LLMs are still facing challenges when applied to domain-specific areas like telecommunications, which demands specialized expertise and adaptability to evolving standards. This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain. The framework leverages a KG to capture structured, domain-specific information about network protocols, standards, and other telecom-related entities, comprehensively representing their relationships. By integrating KG with RAG, LLMs can dynamically access and utilize the most relevant and up-to-date knowledge during response generation. This hybrid approach bridges the gap between structured knowledge representation and the generative capabilities of LLMs, significantly enhancing accuracy, adaptability, and domain-specific comprehension. Our results demonstrate the effectiveness of the KG-RAG framework in addressing complex technical queries with precision. The proposed KG-RAG model attained an accuracy of 88% for question answering tasks on a frequently used telecom-specific dataset, compared to 82% for the RAG-only and 48% for the LLM-only approaches.
Abstract:This paper demonstrates a surprising result for segmentation with image-level targets: extending binary class tags to approximate relative object-size distributions allows off-the-shelf architectures to solve the segmentation problem. A straightforward zero-avoiding KL-divergence loss for average predictions produces segmentation accuracy comparable to the standard pixel-precise supervision with full ground truth masks. In contrast, current results based on class tags typically require complex non-reproducible architectural modifications and specialized multi-stage training procedures. Our ideas are validated on PASCAL VOC using our new human annotations of approximate object sizes. We also show the results on COCO and medical data using synthetically corrupted size targets. All standard networks demonstrate robustness to the size targets' errors. For some classes, the validation accuracy is significantly better than the pixel-level supervision; the latter is not robust to errors in the masks. Our work provides new ideas and insights on image-level supervision in segmentation and may encourage other simple general solutions to the problem.
Abstract:Nonlinear self-interference (SI) cancellation is essential for mitigating the impact of transmitter-side nonlinearity on overall SI cancellation performance in flexible duplex systems, including in-band full-duplex (IBFD) and sub-band full-duplex (SBFD). Digital SI cancellation (SIC) must address the nonlinearity in the power amplifier (PA) and the in-phase/quadrature-phase (IQ) imbalance from up/down converters at the base station (BS), in addition to analog SIC. In environments with rich signal reflection paths, however, the required number of delayed taps for time-domain nonlinear SI cancellation increases exponentially with the number of multipaths, leading to excessive complexity. This paper introduces a novel, low-complexity, frequency domain nonlinear SIC, suitable for flexible duplex systems with multiple-input and multiple-output (MIMO) configurations. The key approach involves decomposing nonlinear SI into a nonlinear basis and categorizing them based on their effectiveness across any flexible duplex setting. The proposed algorithm is founded on our analytical results of intermodulation distortion (IMD) in the frequency domain and utilizes a specialized pilot sequence. This algorithm is directly applicable to orthogonal frequency division multiplexing (OFDM) multi-carrier systems and offers lower complexity than conventional digital SIC methods. Additionally, we assess the impact of the proposed SIC on flexible duplex systems through system-level simulation (SLS) using 3D ray-tracing and proof-of-concept (PoC) measurement.
Abstract:Multimodal large language models have become a popular topic in deep visual understanding due to many promising real-world applications. However, hour-long video understanding, spanning over one hour and containing tens of thousands of visual frames, remains under-explored because of 1) challenging long-term video analyses, 2) inefficient large-model approaches, and 3) lack of large-scale benchmark datasets. Among them, in this paper, we focus on building a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models. HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA) pairs with time-aware query and diverse annotations, covering frame-level, within-event-level, cross-event-level, and long-term reasoning tasks. We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks. This includes promoting future long video understanding tasks at a granular level, such as deep understanding of long live videos, meeting recordings, and movies.
Abstract:We study a classical problem in private prediction, the problem of computing an $(m\epsilon, \delta)$-differentially private majority of $K$ $(\epsilon, \Delta)$-differentially private algorithms for $1 \leq m \leq K$ and $1 > \delta \geq \Delta \geq 0$. Standard methods such as subsampling or randomized response are widely used, but do they provide optimal privacy-utility tradeoffs? To answer this, we introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm. It is parameterized by a data-dependent noise function $\gamma$, and enables efficient utility optimization over the class of all private algorithms, encompassing those standard methods. We show that maximizing the utility of an $(m\epsilon, \delta)$-private majority algorithm can be computed tractably through an optimization problem for any $m \leq K$ by a novel structural result that reduces the infinitely many privacy constraints into a polynomial set. In some settings, we show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility. Lastly, we demonstrate the strong empirical effectiveness of our first-of-its-kind privacy-constrained utility optimization for ensembling labels for private prediction from private teachers in image classification. Notably, our DaRRM framework with an optimized $\gamma$ exhibits substantial utility gains when compared against several baselines.