Alert button
Picture for Xu Liu

Xu Liu

Alert button

CLIPC8: Face liveness detection algorithm based on image-text pairs and contrastive learning

Nov 29, 2023
Xu Liu, Shu Zhou, Yurong Song, Wenzhe Luo, Xin Zhang

Face recognition technology is widely used in the financial field, and various types of liveness attack behaviors need to be addressed. Existing liveness detection algorithms are trained on specific training datasets and tested on testing datasets, but their performance and robustness in transferring to unseen datasets are relatively poor. To tackle this issue, we propose a face liveness detection method based on image-text pairs and contrastive learning, dividing liveness attack problems in the financial field into eight categories and using text information to describe the images of these eight types of attacks. The text encoder and image encoder are used to extract feature vector representations for the classification description text and face images, respectively. By maximizing the similarity of positive samples and minimizing the similarity of negative samples, the model learns shared representations between images and texts. The proposed method is capable of effectively detecting specific liveness attack behaviors in certain scenarios, such as those occurring in dark environments or involving the tampering of ID card photos. Additionally, it is also effective in detecting traditional liveness attack methods, such as printing photo attacks and screen remake attacks. The zero-shot capabilities of face liveness detection on five public datasets, including NUAA, CASIA-FASD, Replay-Attack, OULU-NPU and MSU-MFSD also reaches the level of commercial algorithms. The detection capability of proposed algorithm was verified on 5 types of testing datasets, and the results show that the method outperformed commercial algorithms, and the detection rates reached 100% on multiple datasets. Demonstrating the effectiveness and robustness of introducing image-text pairs and contrastive learning into liveness detection tasks as proposed in this paper.

Viaarxiv icon

Data-Centric Long-Tailed Image Recognition

Nov 03, 2023
Yanbiao Ma, Licheng Jiao, Fang Liu, Shuyuan Yang, Xu Liu, Puhua Chen

In the context of the long-tail scenario, models exhibit a strong demand for high-quality data. Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance. Among these approaches, information augmentation has been progressively introduced as a crucial category. It achieves a balance in model performance by augmenting the richness and quantity of samples in the tail classes. However, there is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation methods. Consequently, the utilization of information augmentation in long-tail recognition tasks relies heavily on empirical and intricate fine-tuning. This work makes two primary contributions. Firstly, we approach the problem from the perspectives of feature diversity and distribution shift, introducing the concept of Feature Diversity Gain (FDG) to elucidate why information augmentation is effective. We find that the performance of information augmentation can be explained by FDG, and its performance peaks when FDG achieves an appropriate balance. Experimental results demonstrate that by using FDG to select augmented data, we can further enhance model performance without the need for any modifications to the model's architecture. Thus, data-centric approaches hold significant potential in the field of long-tail recognition, beyond the development of new model structures. Furthermore, we systematically introduce the core components and fundamental tasks of a data-centric long-tail learning framework for the first time. These core components guide the implementation and deployment of the system, while the corresponding fundamental tasks refine and expand the research area.

* 13 pages 
Viaarxiv icon

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting

Oct 28, 2023
Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, Roger Zimmermann

Multivariate time series forecasting plays a pivotal role in contemporary web technologies. In contrast to conventional methods that involve creating dedicated models for specific time series application domains, this research advocates for a unified model paradigm that transcends domain boundaries. However, learning an effective cross-domain model presents the following challenges. First, various domains exhibit disparities in data characteristics, e.g., the number of variables, posing hurdles for existing models that impose inflexible constraints on these factors. Second, the model may encounter difficulties in distinguishing data from various domains, leading to suboptimal performance in our assessments. Third, the diverse convergence rates of time series domains can also result in compromised empirical performance. To address these issues, we propose UniTime for effective cross-domain time series learning. Concretely, UniTime can flexibly adapt to data with varying characteristics. It also uses domain instructions and a Language-TS Transformer to offer identification information and align two modalities. In addition, UniTime employs masking to alleviate domain convergence speed imbalance issues. Our extensive experiments demonstrate the effectiveness of UniTime in advancing state-of-the-art forecasting performance and zero-shot transferability.

Viaarxiv icon

Towards Unifying Diffusion Models for Probabilistic Spatio-Temporal Graph Learning

Oct 26, 2023
Junfeng Hu, Xu Liu, Zhencheng Fan, Yuxuan Liang, Roger Zimmermann

Spatio-temporal graph learning is a fundamental problem in the Web of Things era, which enables a plethora of Web applications such as smart cities, human mobility and climate analysis. Existing approaches tackle different learning tasks independently, tailoring their models to unique task characteristics. These methods, however, fall short of modeling intrinsic uncertainties in the spatio-temporal data. Meanwhile, their specialized designs limit their universality as general spatio-temporal learning solutions. In this paper, we propose to model the learning tasks in a unified perspective, viewing them as predictions based on conditional information with shared spatio-temporal patterns. Based on this proposal, we introduce Unified Spatio-Temporal Diffusion Models (USTD) to address the tasks uniformly within the uncertainty-aware diffusion framework. USTD is holistically designed, comprising a shared spatio-temporal encoder and attention-based denoising networks that are task-specific. The shared encoder, optimized by a pre-training strategy, effectively captures conditional spatio-temporal patterns. The denoising networks, utilizing both cross- and self-attention, integrate conditional dependencies and generate predictions. Opting for forecasting and kriging as downstream tasks, we design Gated Attention (SGA) and Temporal Gated Attention (TGA) for each task, with different emphases on the spatial and temporal dimensions, respectively. By combining the advantages of deterministic encoders and probabilistic diffusion models, USTD achieves state-of-the-art performances compared to deterministic and probabilistic baselines in both tasks, while also providing valuable uncertainty estimates.

Viaarxiv icon

Orthogonal Uncertainty Representation of Data Manifold for Robust Long-Tailed Learning

Oct 16, 2023
Yanbiao Ma, Licheng Jiao, Fang Liu, Shuyuan Yang, Xu Liu, Lingling Li

In scenarios with long-tailed distributions, the model's ability to identify tail classes is limited due to the under-representation of tail samples. Class rebalancing, information augmentation, and other techniques have been proposed to facilitate models to learn the potential distribution of tail classes. The disadvantage is that these methods generally pursue models with balanced class accuracy on the data manifold, while ignoring the ability of the model to resist interference. By constructing noisy data manifold, we found that the robustness of models trained on unbalanced data has a long-tail phenomenon. That is, even if the class accuracy is balanced on the data domain, it still has bias on the noisy data manifold. However, existing methods cannot effectively mitigate the above phenomenon, which makes the model vulnerable in long-tailed scenarios. In this work, we propose an Orthogonal Uncertainty Representation (OUR) of feature embedding and an end-to-end training strategy to improve the long-tail phenomenon of model robustness. As a general enhancement tool, OUR has excellent compatibility with other methods and does not require additional data generation, ensuring fast and efficient training. Comprehensive evaluations on long-tailed datasets show that our method significantly improves the long-tail phenomenon of robustness, bringing consistent performance gains to other long-tailed learning methods.

* 10pages,Accepted by ACM MM 2023 
Viaarxiv icon

TreeScope: An Agricultural Robotics Dataset for LiDAR-Based Mapping of Trees in Forests and Orchards

Oct 03, 2023
Derek Cheng, Fernando Cladera Ojeda, Ankit Prabhu, Xu Liu, Alan Zhu, Patrick Corey Green, Reza Ehsani, Pratik Chaudhari, Vijay Kumar

Data collection for forestry, timber, and agriculture currently relies on manual techniques which are labor-intensive and time-consuming. We seek to demonstrate that robotics offers improvements over these techniques and accelerate agricultural research, beginning with semantic segmentation and diameter estimation of trees in forests and orchards. We present TreeScope v1.0, the first robotics dataset for precision agriculture and forestry addressing the counting and mapping of trees in forestry and orchards. TreeScope provides LiDAR data from agricultural environments collected with robotics platforms, such as UAV and mobile robot platforms carried by vehicles and human operators. In the first release of this dataset, we provide ground-truth data with over 1,800 manually annotated semantic labels for tree stems and field-measured tree diameters. We share benchmark scripts for these tasks that researchers may use to evaluate the accuracy of their algorithms. Finally, we run our open-source diameter estimation and off-the-shelf semantic segmentation algorithms and share our baseline results.

* Submitted to 2024 IEEE International Conference on Robotics and Automation (ICRA 2024) for review 
Viaarxiv icon

Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment

Sep 23, 2023
Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, Roger Zimmermann

Figure 1 for Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment
Figure 2 for Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment
Figure 3 for Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment
Figure 4 for Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment

Spatio-Temporal Graph (STG) forecasting is a fundamental task in many real-world applications. Spatio-Temporal Graph Neural Networks have emerged as the most popular method for STG forecasting, but they often struggle with temporal out-of-distribution (OoD) issues and dynamic spatial causation. In this paper, we propose a novel framework called CaST to tackle these two challenges via causal treatments. Concretely, leveraging a causal lens, we first build a structural causal model to decipher the data generation process of STGs. To handle the temporal OoD issue, we employ the back-door adjustment by a novel disentanglement block to separate invariant parts and temporal environments from input data. Moreover, we utilize the front-door adjustment and adopt the Hodge-Laplacian operator for edge-level convolution to model the ripple effect of causation. Experiments results on three real-world datasets demonstrate the effectiveness and practicality of CaST, which consistently outperforms existing methods with good interpretability.

* To appear at NeurIPS 2023 
Viaarxiv icon

3D Active Metric-Semantic SLAM

Sep 13, 2023
Yuezhan Tao, Xu Liu, Igor Spasojevic, Saurav Agarwa, Vijay Kumar

Figure 1 for 3D Active Metric-Semantic SLAM
Figure 2 for 3D Active Metric-Semantic SLAM
Figure 3 for 3D Active Metric-Semantic SLAM
Figure 4 for 3D Active Metric-Semantic SLAM

In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using Size Weight and Power (SWaP) constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We propose a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for SWaP-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including Semantic Loop Closure (SLC), we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.

* Submitted to RA-L for review 
Viaarxiv icon

Spiking Structured State Space Model for Monaural Speech Enhancement

Sep 07, 2023
Yu Du, Xu Liu, Yansong Chua

Figure 1 for Spiking Structured State Space Model for Monaural Speech Enhancement
Figure 2 for Spiking Structured State Space Model for Monaural Speech Enhancement
Figure 3 for Spiking Structured State Space Model for Monaural Speech Enhancement
Figure 4 for Spiking Structured State Space Model for Monaural Speech Enhancement

Speech enhancement seeks to extract clean speech from noisy signals. Traditional deep learning methods face two challenges: efficiently using information in long speech sequences and high computational costs. To address these, we introduce the Spiking Structured State Space Model (Spiking-S4). This approach merges the energy efficiency of Spiking Neural Networks (SNN) with the long-range sequence modeling capabilities of Structured State Space Models (S4), offering a compelling solution. Evaluation on the DNS Challenge and VoiceBank+Demand Datasets confirms that Spiking-S4 rivals existing Artificial Neural Network (ANN) methods but with fewer computational resources, as evidenced by reduced parameters and Floating Point Operations (FLOPs).

Viaarxiv icon