Abstract:As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
Abstract:The decision-making of TBM operating parameters has an important guiding significance for TBM safe and efficient construction, and it has been one of the research hotpots in the field of TBM tunneling. For this purpose, this paper introduces rock-breaking rules into machine learning method, and a rock-machine mapping dual-driven by physical-rule and data-mining is established with high accuracy. This dual-driven mappings are subsequently used as objective function and constraints to build a decision-making method for TBM operating parameters. By searching the revolution per minute and penetration corresponding to the extremum of the objective function subject to the constraints, the optimal operating parameters can be obtained. This method is verified in the field of the Second Water Source Channel of Hangzhou, China, resulting in the average penetration rate increased by 11.3%, and the total cost decreased by 10.0%, which proves the practicability and effectiveness of the developed decision-making model.