Abstract:Large Language Models (LLMs) are increasingly used as automated evaluators in natural language generation, yet it remains unclear whether they can accurately replicate human judgments of error severity. In this study, we systematically compare human and LLM assessments of image descriptions containing controlled semantic errors. We extend the experimental framework of van Miltenburg et al. (2020) to both unimodal (text-only) and multimodal (text + image) settings, evaluating four error types: age, gender, clothing type, and clothing colour. Our findings reveal that humans assign varying levels of severity to different error types, with visual context significantly amplifying perceived severity for colour and type errors. Notably, most LLMs assign low scores to gender errors but disproportionately high scores to colour errors, unlike humans, who judge both as highly severe but for different reasons. This suggests that these models may have internalised social norms influencing gender judgments but lack the perceptual grounding to emulate human sensitivity to colour, which is shaped by distinct neural mechanisms. Only one of the evaluated LLMs, Doubao, replicates the human-like ranking of error severity, but it fails to distinguish between error types as clearly as humans. Surprisingly, DeepSeek-V3, a unimodal LLM, achieves the highest alignment with human judgments across both unimodal and multimodal conditions, outperforming even state-of-the-art multimodal models.
Abstract:Emotional Support Conversations (ESC) are crucial for providing empathy, validation, and actionable guidance to individuals in distress. However, existing definitions of the ESC task oversimplify the structure of supportive responses, typically modelling them as single strategy-utterance pairs. Through a detailed corpus analysis of the ESConv dataset, we identify a common yet previously overlooked phenomenon: emotional supporters often employ multiple strategies consecutively within a single turn. We formally redefine the ESC task to account for this, proposing a revised formulation that requires generating the full sequence of strategy-utterance pairs given a dialogue history. To facilitate this refined task, we introduce several modelling approaches, including supervised deep learning models and large language models. Our experiments show that, under this redefined task, state-of-the-art LLMs outperform both supervised models and human supporters. Notably, contrary to some earlier findings, we observe that LLMs frequently ask questions and provide suggestions, demonstrating more holistic support capabilities.
Abstract:We present the system developed by the Central China Normal University (CCNU) team for the Mu-SHROOM shared task, which focuses on identifying hallucinations in question-answering systems across 14 different languages. Our approach leverages multiple Large Language Models (LLMs) with distinct areas of expertise, employing them in parallel to annotate hallucinations, effectively simulating a crowdsourcing annotation process. Furthermore, each LLM-based annotator integrates both internal and external knowledge related to the input during the annotation process. Using the open-source LLM DeepSeek-V3, our system achieves the top ranking (\#1) for Hindi data and secures a Top-5 position in seven other languages. In this paper, we also discuss unsuccessful approaches explored during our development process and share key insights gained from participating in this shared task.
Abstract:Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years. In this work, we consider a pair of correlated (sparse) stochastic block models $\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon;s)$ that are subsampled from a common parent stochastic block model $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon)$ with $k=O(1)$ symmetric communities, average degree $\lambda=O(1)$, divergence parameter $\epsilon$, and subsampling probability $s$. For the detection problem of distinguishing this model from a pair of independent Erd\H{o}s-R\'enyi graphs with the same edge density $\mathcal{G}(n,\tfrac{\lambda s}{n})$, we focus on tests based on \emph{low-degree polynomials} of the entries of the adjacency matrices, and we determine the threshold that separates the easy and hard regimes. More precisely, we show that this class of tests can distinguish these two models if and only if $s> \min \{ \sqrt{\alpha}, \frac{1}{\lambda \epsilon^2} \}$, where $\alpha\approx 0.338$ is the Otter's constant and $\frac{1}{\lambda \epsilon^2}$ is the Kesten-Stigum threshold. Our proof of low-degree hardness is based on a conditional variant of the low-degree likelihood calculation.
Abstract:Theoretical linguists have suggested that some languages (e.g., Chinese and Japanese) are "cooler" than other languages based on the observation that the intended meaning of phrases in these languages depends more on their contexts. As a result, many expressions in these languages are shortened, and their meaning is inferred from the context. In this paper, we focus on the omission of the plurality and definiteness markers in Chinese noun phrases (NPs) to investigate the predictability of their intended meaning given the contexts. To this end, we built a corpus of Chinese NPs, each of which is accompanied by its corresponding context, and by labels indicating its singularity/plurality and definiteness/indefiniteness. We carried out corpus assessments and analyses. The results suggest that Chinese speakers indeed drop plurality and definiteness markers very frequently. Building on the corpus, we train a bank of computational models using both classic machine learning models and state-of-the-art pre-trained language models to predict the plurality and definiteness of each NP. We report on the performance of these models and analyse their behaviours.
Abstract:Recently, a human evaluation study of Referring Expression Generation (REG) models had an unexpected conclusion: on \textsc{webnlg}, Referring Expressions (REs) generated by the state-of-the-art neural models were not only indistinguishable from the REs in \textsc{webnlg} but also from the REs generated by a simple rule-based system. Here, we argue that this limitation could stem from the use of a purely ratings-based human evaluation (which is a common practice in Natural Language Generation). To investigate these issues, we propose an intrinsic task-based evaluation for REG models, in which, in addition to rating the quality of REs, participants were asked to accomplish two meta-level tasks. One of these tasks concerns the referential success of each RE; the other task asks participants to suggest a better alternative for each RE. The outcomes suggest that, in comparison to previous evaluations, the new evaluation protocol assesses the performance of each REG model more comprehensively and makes the participants' ratings more reliable and discriminable.
Abstract:Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.
Abstract:The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research in evaluating large language models.
Abstract:In recent years, many NLP studies have focused solely on performance improvement. In this work, we focus on the linguistic and scientific aspects of NLP. We use the task of generating referring expressions in context (REG-in-context) as a case study and start our analysis from GREC, a comprehensive set of shared tasks in English that addressed this topic over a decade ago. We ask what the performance of models would be if we assessed them (1) on more realistic datasets, and (2) using more advanced methods. We test the models using different evaluation metrics and feature selection experiments. We conclude that GREC can no longer be regarded as offering a reliable assessment of models' ability to mimic human reference production, because the results are highly impacted by the choice of corpus and evaluation metrics. Our results also suggest that pre-trained language models are less dependent on the choice of corpus than classic Machine Learning models, and therefore make more robust class predictions.
Abstract:Previous work on Neural Referring Expression Generation (REG) all uses WebNLG, an English dataset that has been shown to reflect a very limited range of referring expression (RE) use. To tackle this issue, we build a dataset based on the OntoNotes corpus that contains a broader range of RE use in both English and Chinese (a language that uses zero pronouns). We build neural Referential Form Selection (RFS) models accordingly, assess them on the dataset and conduct probing experiments. The experiments suggest that, compared to WebNLG, OntoNotes is better for assessing REG/RFS models. We compare English and Chinese RFS and confirm that, in line with linguistic theories, Chinese RFS depends more on discourse context than English.