Department of Civil Engineering, University of Toronto
Abstract:Simulation based inference (SBI) methods enable the estimation of posterior distributions when the likelihood function is intractable, but where model simulation is feasible. Popular neural approaches to SBI are the neural posterior estimator (NPE) and its sequential version (SNPE). These methods can outperform statistical SBI approaches such as approximate Bayesian computation (ABC), particularly for relatively small numbers of model simulations. However, we show in this paper that the NPE methods are not guaranteed to be highly accurate, even on problems with low dimension. In such settings the posterior cannot be accurately trained over the prior predictive space, and even the sequential extension remains sub-optimal. To overcome this, we propose preconditioned NPE (PNPE) and its sequential version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter space that produce large discrepancy between simulations and data and allow the posterior emulator to be more accurately trained. We present comprehensive empirical evidence that this melding of neural and statistical SBI methods improves performance over a range of examples, including a motivating example involving a complex agent-based model applied to real tumour growth data.
Abstract:To advance research in learning-based defogging algorithms, various synthetic fog datasets have been developed. However, existing datasets created using the Atmospheric Scattering Model (ASM) or real-time rendering engines often struggle to produce photo-realistic foggy images that accurately mimic the actual imaging process. This limitation hinders the effective generalization of models from synthetic to real data. In this paper, we introduce an end-to-end simulation pipeline designed to generate photo-realistic foggy images. This pipeline comprehensively considers the entire physically-based foggy scene imaging process, closely aligning with real-world image capture methods. Based on this pipeline, we present a new synthetic fog dataset named SynFog, which features both sky light and active lighting conditions, as well as three levels of fog density. Experimental results demonstrate that models trained on SynFog exhibit superior performance in visual perception and detection accuracy compared to others when applied to real-world foggy images.
Abstract:Heavy-ball momentum with decaying learning rates is widely used with SGD for optimizing deep learning models. In contrast to its empirical popularity, the understanding of its theoretical property is still quite limited, especially under the standard anisotropic gradient noise condition for quadratic regression problems. Although it is widely conjectured that heavy-ball momentum method can provide accelerated convergence and should work well in large batch settings, there is no rigorous theoretical analysis. In this paper, we fill this theoretical gap by establishing a non-asymptotic convergence bound for stochastic heavy-ball methods with step decay scheduler on quadratic objectives, under the anisotropic gradient noise condition. As a direct implication, we show that heavy-ball momentum can provide $\tilde{\mathcal{O}}(\sqrt{\kappa})$ accelerated convergence of the bias term of SGD while still achieving near-optimal convergence rate with respect to the stochastic variance term. The combined effect implies an overall convergence rate within log factors from the statistical minimax rate. This means SGD with heavy-ball momentum is useful in the large-batch settings such as distributed machine learning or federated learning, where a smaller number of iterations can significantly reduce the number of communication rounds, leading to acceleration in practice.
Abstract:Remote sensing technology has become a promising tool in yield prediction. Most prior work employs satellite imagery for county-level corn yield prediction by spatially aggregating all pixels within a county into a single value, potentially overlooking the detailed information and valuable insights offered by more granular data. To this end, this research examines each county at the pixel level and applies multiple instance learning to leverage detailed information within a county. In addition, our method addresses the "mixed pixel" issue caused by the inconsistent resolution between feature datasets and crop mask, which may introduce noise into the model and therefore hinder accurate yield prediction. Specifically, the attention mechanism is employed to automatically assign weights to different pixels, which can mitigate the influence of mixed pixels. The experimental results show that the developed model outperforms four other machine learning models over the past five years in the U.S. corn belt and demonstrates its best performance in 2022, achieving a coefficient of determination (R2) value of 0.84 and a root mean square error (RMSE) of 0.83. This paper demonstrates the advantages of our approach from both spatial and temporal perspectives. Furthermore, through an in-depth study of the relationship between mixed pixels and attention, it is verified that our approach can capture critical feature information while filtering out noise from mixed pixels.
Abstract:Current gesture recognition systems primarily focus on identifying gestures within a predefined set, leaving a gap in connecting these gestures to interactive GUI elements or system functions (e.g., linking a 'thumb-up' gesture to a 'like' button). We introduce GestureGPT, a novel zero-shot gesture understanding and grounding framework leveraging large language models (LLMs). Gesture descriptions are formulated based on hand landmark coordinates from gesture videos and fed into our dual-agent dialogue system. A gesture agent deciphers these descriptions and queries about the interaction context (e.g., interface, history, gaze data), which a context agent organizes and provides. Following iterative exchanges, the gesture agent discerns user intent, grounding it to an interactive function. We validated the gesture description module using public first-view and third-view gesture datasets and tested the whole system in two real-world settings: video streaming and smart home IoT control. The highest zero-shot Top-5 grounding accuracies are 80.11% for video streaming and 90.78% for smart home tasks, showing potential of the new gesture understanding paradigm.
Abstract:The exponential growth of data, alongside advancements in model structures and loss functions, has necessitated the enhancement of image retrieval systems through the utilization of new models with superior feature embeddings. However, the expensive process of updating the old retrieval database by replacing embeddings poses a challenge. As a solution, backward-compatible training can be employed to avoid the necessity of updating old retrieval datasets. While previous methods achieved backward compatibility by aligning prototypes of the old model, they often overlooked the distribution of the old features, thus limiting their effectiveness when the old model's low quality leads to a weakly discriminative feature distribution. On the other hand, instance-based methods like L2 regression take into account the distribution of old features but impose strong constraints on the performance of the new model itself. In this paper, we propose MixBCT, a simple yet highly effective backward-compatible training method that serves as a unified framework for old models of varying qualities. Specifically, we summarize four constraints that are essential for ensuring backward compatibility in an ideal scenario, and we construct a single loss function to facilitate backward-compatible training. Our approach adaptively adjusts the constraint domain for new features based on the distribution of the old embeddings. We conducted extensive experiments on the large-scale face recognition datasets MS1Mv3 and IJB-C to verify the effectiveness of our method. The experimental results clearly demonstrate its superiority over previous methods. Code is available at https://github.com/yuleung/MixBCT
Abstract:As more deep learning models are being applied in real-world applications, there is a growing need for modeling and learning the representations of neural networks themselves. An efficient representation can be used to predict target attributes of networks without the need for actual training and deployment procedures, facilitating efficient network deployment and design. Recently, inspired by the success of Transformer, some Transformer-based representation learning frameworks have been proposed and achieved promising performance in handling cell-structured models. However, graph neural network (GNN) based approaches still dominate the field of learning representation for the entire network. In this paper, we revisit Transformer and compare it with GNN to analyse their different architecture characteristics. We then propose a modified Transformer-based universal neural network representation learning model NAR-Former V2. It can learn efficient representations from both cell-structured networks and entire networks. Specifically, we first take the network as a graph and design a straightforward tokenizer to encode the network into a sequence. Then, we incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture. Additionally, we introduce a series of simple yet effective modifications to enhance the ability of the Transformer in learning representation from graph structures. Our proposed method surpasses the GNN-based method NNLP by a significant margin in latency estimation on the NNLQP dataset. Furthermore, regarding accuracy prediction on the NASBench101 and NASBench201 datasets, our method achieves highly comparable performance to other state-of-the-art methods.
Abstract:Perimeter control maintains high traffic efficiency within protected regions by controlling transfer flows among regions to ensure that their traffic densities are below critical values. Existing approaches can be categorized as either model-based or model-free, depending on whether they rely on network transmission models (NTMs) and macroscopic fundamental diagrams (MFDs). Although model-based approaches are more data efficient and have performance guarantees, they are inherently prone to model bias and inaccuracy. For example, NTMs often become imprecise for a large number of protected regions, and MFDs can exhibit scatter and hysteresis that are not captured in existing model-based works. Moreover, no existing studies have employed reinforcement learning for homogeneous flow rate optimization in microscopic simulation, where spatial characteristics, vehicle-level information, and metering realizations -- often overlooked in macroscopic simulations -- are taken into account. To circumvent issues of model-based approaches and macroscopic simulation, we propose a model-free deep reinforcement learning approach that optimizes the flow rate homogeneously at the perimeter at the microscopic level. Results demonstrate that our model-free reinforcement learning approach without any knowledge of NTMs or MFDs can compete and match the performance of a model-based approach, and exhibits enhanced generalizability and scalability.
Abstract:Bilevel optimization has found successful applications in various machine learning problems, including hyper-parameter optimization, data cleaning, and meta-learning. However, its huge computational cost presents a significant challenge for its utilization in large-scale problems. This challenge arises due to the nested structure of the bilevel formulation, where each hyper-gradient computation necessitates a costly inner optimization procedure. To address this issue, we propose a reformulation of bilevel optimization as a minimax problem, effectively decoupling the outer-inner dependency. Under mild conditions, we show these two problems are equivalent. Furthermore, we introduce a multi-stage gradient descent and ascent (GDA) algorithm to solve the resulting minimax problem with convergence guarantees. Extensive experimental results demonstrate that our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
Abstract:An innovative sort of mobility platform that can both drive and fly is the air-ground robot. The need for an agile flight cannot be satisfied by traditional path planning techniques for air-ground robots. Prior studies had mostly focused on improving the energy efficiency of paths, seldom taking the seeking speed and optimizing take-off and landing places into account. A robot for the field application environment was proposed, and a lightweight global spatial planning technique for the robot based on the graph-search algorithm taking mode switching point optimization into account, with an emphasis on energy efficiency, searching speed, and the viability of real deployment. The fundamental concept is to lower the computational burden by employing an interchangeable search approach that combines planar and spatial search. Furthermore, to safeguard the health of the power battery and the integrity of the mission execution, a trap escape approach was also provided. Simulations are run to test the effectiveness of the suggested model based on the field DEM map. The simulation results show that our technology is capable of producing finished, plausible 3D paths with a high degree of believability. Additionally, the mode-switching point optimization method efficiently identifies additional acceptable places for mode switching, and the improved paths use less time and energy.