Abstract:Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) in computer vision has enabled promising downstream performance on top of the learned self-supervised ViT features. In this paper, we question if the extremely simple ViTs' fine-tuning performance with a small-scale architecture can also benefit from this pre-training paradigm, which is considerably less studied yet in contrast to the well-established lightweight architecture design methodology with sophisticated components introduced. By carefully adapting various typical MIM pre-training methods to this lightweight regime and comparing them with the contrastive learning (CL) pre-training on various downstream image classification and dense prediction tasks, we systematically observe different behaviors between MIM and CL with respect to the downstream fine-tuning data scales. Furthermore, we analyze the frozen features under linear probing evaluation and also the layer representation similarities and attention maps across the obtained models, which clearly show the inferior learning of MIM pre-training on higher layers, leading to unsatisfactory fine-tuning performance on data-insufficient downstream tasks. This finding is naturally a guide to choosing appropriate distillation strategies during pre-training to solve the above deterioration problem. Extensive experiments on various vision tasks demonstrate the effectiveness of our observation-analysis-solution flow. In particular, our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design (5.7M/6.5M) can achieve 79.4%/78.9% top-1 accuracy on ImageNet-1K. It also enables SOTA performance on the ADE20K semantic segmentation task (42.8% mIoU) and LaSOT visual tracking task (66.1% AUC) in the lightweight regime. The latter even surpasses all the current SOTA lightweight CPU-realtime trackers.
Abstract:Inspired by the success of general-purpose models in NLP, recent studies attempt to unify different vision tasks in the same sequence format and employ autoregressive Transformers for sequence prediction. They apply uni-directional attention to capture sequential dependencies and generate task sequences recursively. However, such autoregressive Transformers may not fit vision tasks well, as vision task sequences usually lack the sequential dependencies typically observed in natural languages. In this work, we design Masked AutoDecoder~(MAD), an effective multi-task vision generalist. MAD consists of two core designs. First, we develop a parallel decoding framework that introduces bi-directional attention to capture contextual dependencies comprehensively and decode vision task sequences in parallel. Second, we design a masked sequence modeling approach that learns rich task contexts by masking and reconstructing task sequences. In this way, MAD handles all the tasks by a single network branch and a simple cross-entropy loss with minimal task-specific designs. Extensive experiments demonstrate the great potential of MAD as a new paradigm for unifying various vision tasks. MAD achieves superior performance and inference efficiency compared to autoregressive counterparts while obtaining competitive accuracy with task-specific models. Code will be released.
Abstract:Monocular 3D detection (M3D) aims for precise 3D object localization from a single-view image which usually involves labor-intensive annotation of 3D detection boxes. Weakly supervised M3D has recently been studied to obviate the 3D annotation process by leveraging many existing 2D annotations, but it often requires extra training data such as LiDAR point clouds or multi-view images which greatly degrades its applicability and usability in various applications. We propose SKD-WM3D, a weakly supervised monocular 3D detection framework that exploits depth information to achieve M3D with a single-view image exclusively without any 3D annotations or other training data. One key design in SKD-WM3D is a self-knowledge distillation framework, which transforms image features into 3D-like representations by fusing depth information and effectively mitigates the inherent depth ambiguity in monocular scenarios with little computational overhead in inference. In addition, we design an uncertainty-aware distillation loss and a gradient-targeted transfer modulation strategy which facilitate knowledge acquisition and knowledge transfer, respectively. Extensive experiments show that SKD-WM3D surpasses the state-of-the-art clearly and is even on par with many fully supervised methods.
Abstract:The recent Segment Anything Model (SAM) has demonstrated remarkable zero-shot capability and flexible geometric prompting in general image segmentation. However, SAM often struggles when handling various unconventional images, such as aerial, medical, and non-RGB images. This paper presents CAT-SAM, a ConditionAl Tuning network that adapts SAM toward various unconventional target tasks with just few-shot target samples. CAT-SAM freezes the entire SAM and adapts its mask decoder and image encoder simultaneously with a small number of learnable parameters. The core design is a prompt bridge structure that enables decoder-conditioned joint tuning of the heavyweight image encoder and the lightweight mask decoder. The bridging maps the prompt token of the mask decoder to the image encoder, fostering synergic adaptation of the encoder and the decoder with mutual benefits. We develop two representative tuning strategies for the image encoder which leads to two CAT-SAM variants: one injecting learnable prompt tokens in the input space and the other inserting lightweight adapter networks. Extensive experiments over 11 unconventional tasks show that both CAT-SAM variants achieve superior target segmentation performance consistently even under the very challenging one-shot adaptation setup. Project page: \url{https://xiaoaoran.github.io/projects/CAT-SAM}
Abstract:Correspondence pruning aims to find correct matches (inliers) from an initial set of putative correspondences, which is a fundamental task for many applications. The process of finding is challenging, given the varying inlier ratios between scenes/image pairs due to significant visual differences. However, the performance of the existing methods is usually limited by the problem of lacking visual cues (\eg texture, illumination, structure) of scenes. In this paper, we propose a Visual-Spatial Fusion Transformer (VSFormer) to identify inliers and recover camera poses accurately. Firstly, we obtain highly abstract visual cues of a scene with the cross attention between local features of two-view images. Then, we model these visual cues and correspondences by a joint visual-spatial fusion module, simultaneously embedding visual cues into correspondences for pruning. Additionally, to mine the consistency of correspondences, we also design a novel module that combines the KNN-based graph and the transformer, effectively capturing both local and global contexts. Extensive experiments have demonstrated that the proposed VSFormer outperforms state-of-the-art methods on outdoor and indoor benchmarks. Our code is provided at the following repository: https://github.com/sugar-fly/VSFormer.
Abstract:Recently, numerous tensor SVD (t-SVD)-based tensor recovery methods have emerged, showing promise in processing visual data. However, these methods often suffer from performance degradation when confronted with high-order tensor data exhibiting non-smooth changes, commonly observed in real-world scenarios but ignored by the traditional t-SVD-based methods. Our objective in this study is to provide an effective tensor recovery technique for handling non-smooth changes in tensor data and efficiently explore the correlations of high-order tensor data across its various dimensions without introducing numerous variables and weights. To this end, we introduce a new tensor decomposition and a new tensor norm called the Tensor $U_1$ norm. We utilize these novel techniques in solving the problem of high-order tensor completion problem and provide theoretical guarantees for the exact recovery of the resulting tensor completion models. An optimization algorithm is proposed to solve the resulting tensor completion model iteratively by combining the proximal algorithm with the Alternating Direction Method of Multipliers. Theoretical analysis showed the convergence of the algorithm to the Karush-Kuhn-Tucker (KKT) point of the optimization problem. Numerical experiments demonstrated the effectiveness of the proposed method in high-order tensor completion, especially for tensor data with non-smooth changes.
Abstract:Video object segmentation has been applied to various computer vision tasks, such as video editing, autonomous driving, and human-robot interaction. However, the methods based on deep neural networks are vulnerable to adversarial examples, which are the inputs attacked by almost human-imperceptible perturbations, and the adversary (i.e., attacker) will fool the segmentation model to make incorrect pixel-level predictions. This will rise the security issues in highly-demanding tasks because small perturbations to the input video will result in potential attack risks. Though adversarial examples have been extensively used for classification, it is rarely studied in video object segmentation. Existing related methods in computer vision either require prior knowledge of categories or cannot be directly applied due to the special design for certain tasks, failing to consider the pixel-wise region attack. Hence, this work develops an object-agnostic adversary that has adversarial impacts on VOS by first-frame attacking via hard region discovery. Particularly, the gradients from the segmentation model are exploited to discover the easily confused region, in which it is difficult to identify the pixel-wise objects from the background in a frame. This provides a hardness map that helps to generate perturbations with a stronger adversarial power for attacking the first frame. Empirical studies on three benchmarks indicate that our attacker significantly degrades the performance of several state-of-the-art video object segmentation models.
Abstract:Pose-free neural radiance fields (NeRF) aim to train NeRF with unposed multi-view images and it has achieved very impressive success in recent years. Most existing works share the pipeline of training a coarse pose estimator with rendered images at first, followed by a joint optimization of estimated poses and neural radiance field. However, as the pose estimator is trained with only rendered images, the pose estimation is usually biased or inaccurate for real images due to the domain gap between real images and rendered images, leading to poor robustness for the pose estimation of real images and further local minima in joint optimization. We design IR-NeRF, an innovative pose-free NeRF that introduces implicit pose regularization to refine pose estimator with unposed real images and improve the robustness of the pose estimation for real images. With a collection of 2D images of a specific scene, IR-NeRF constructs a scene codebook that stores scene features and captures the scene-specific pose distribution implicitly as priors. Thus, the robustness of pose estimation can be promoted with the scene priors according to the rationale that a 2D real image can be well reconstructed from the scene codebook only when its estimated pose lies within the pose distribution. Extensive experiments show that IR-NeRF achieves superior novel view synthesis and outperforms the state-of-the-art consistently across multiple synthetic and real datasets.
Abstract:Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.
Abstract:In the past decade, deep neural networks have achieved significant progress in point cloud learning. However, collecting large-scale precisely-annotated training data is extremely laborious and expensive, which hinders the scalability of existing point cloud datasets and poses a bottleneck for efficient exploration of point cloud data in various tasks and applications. Label-efficient learning offers a promising solution by enabling effective deep network training with much-reduced annotation efforts. This paper presents the first comprehensive survey of label-efficient learning of point clouds. We address three critical questions in this emerging research field: i) the importance and urgency of label-efficient learning in point cloud processing, ii) the subfields it encompasses, and iii) the progress achieved in this area. To achieve this, we propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels. We categorize four typical label-efficient learning approaches that significantly reduce point cloud annotation efforts: data augmentation, domain transfer learning, weakly-supervised learning, and pretrained foundation models. For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges. Finally, we share insights into current research challenges and potential future directions. A project associated with this survey has been built at \url{https://github.com/xiaoaoran/3D_label_efficient_learning}.