Abstract:Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models' human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs' ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
Abstract:Low-Rank Adaptation (LoRA) fusion has emerged as a key technique for reusing and composing learned subject and style representations for controllable generation without costly retraining. However, existing methods rely on weight-based merging, where one LoRA often dominates the other, leading to interference and degraded fidelity. This interference is structural: separately trained LoRAs occupy low-rank high-dimensional subspaces, leading to non-orthogonal and overlapping representations. In this work, we analyze the internal structure of LoRAs and find their generative behavior is dominated by a few principal directions in the low-rank subspace, which should remain free from interference during fusion. To achieve this, we propose Null Space Projection LoRA (NP-LoRA), a projection-based framework for LoRA fusion that enforces subspace separation to prevent structural interference among principal directions. Specifically, we first extract principal style directions via singular value decomposition (SVD) and then project the subject LoRA into its orthogonal null space. Furthermore, we introduce a soft projection mechanism that enables smooth control over the trade-off between subject fidelity and style consistency. Experiments show NP-LoRA consistently improves fusion quality over strong baselines (e.g., DINO and CLIP-based metrics, with human and LLM preference scores), and applies broadly across backbones and LoRA pairs without retraining.




Abstract:Recently segment anything model (SAM) has attracted widespread concerns, and it is often treated as a vision foundation model for universal segmentation. Some researchers have attempted to directly apply the foundation model to the RGB-D video salient object detection (RGB-D VSOD) task, which often encounters three challenges, including the dependence on manual prompts, the high memory consumption of sequential adapters, and the computational burden of memory attention. To address the limitations, we propose a novel method, namely Segment Anything Model with Depth-guided Adaptive Queries (SAM-DAQ), which adapts SAM2 to pop-out salient objects from videos by seamlessly integrating depth and temporal cues within a unified framework. Firstly, we deploy a parallel adapter-based multi-modal image encoder (PAMIE), which incorporates several depth-guided parallel adapters (DPAs) in a skip-connection way. Remarkably, we fine-tune the frozen SAM encoder under prompt-free conditions, where the DPA utilizes depth cues to facilitate the fusion of multi-modal features. Secondly, we deploy a query-driven temporal memory (QTM) module, which unifies the memory bank and prompt embeddings into a learnable pipeline. Concretely, by leveraging both frame-level queries and video-level queries simultaneously, the QTM module can not only selectively extract temporal consistency features but also iteratively update the temporal representations of the queries. Extensive experiments are conducted on three RGB-D VSOD datasets, and the results show that the proposed SAM-DAQ consistently outperforms state-of-the-art methods in terms of all evaluation metrics.
Abstract:Cross-domain few-shot segmentation (CD-FSS) aims to tackle the dual challenge of recognizing novel classes and adapting to unseen domains with limited annotations. However, encoder features often entangle domain-relevant and category-relevant information, limiting both generalization and rapid adaptation to new domains. To address this issue, we propose a Divide-and-Conquer Decoupled Network (DCDNet). In the training stage, to tackle feature entanglement that impedes cross-domain generalization and rapid adaptation, we propose the Adversarial-Contrastive Feature Decomposition (ACFD) module. It decouples backbone features into category-relevant private and domain-relevant shared representations via contrastive learning and adversarial learning. Then, to mitigate the potential degradation caused by the disentanglement, the Matrix-Guided Dynamic Fusion (MGDF) module adaptively integrates base, shared, and private features under spatial guidance, maintaining structural coherence. In addition, in the fine-tuning stage, to enhanced model generalization, the Cross-Adaptive Modulation (CAM) module is placed before the MGDF, where shared features guide private features via modulation ensuring effective integration of domain-relevant information. Extensive experiments on four challenging datasets show that DCDNet outperforms existing CD-FSS methods, setting a new state-of-the-art for cross-domain generalization and few-shot adaptation.
Abstract:Salient object detection (SOD) in complex environments remains a challenging research topic. Most existing methods perform well in natural scenes with negligible noise, and tend to leverage multi-modal information (e.g., depth and infrared) to enhance accuracy. However, few studies are concerned with the damage of weather noise on SOD performance due to the lack of dataset with pixel-wise annotations. To bridge this gap, this paper introduces a novel Weather-eXtended Salient Object Detection (WXSOD) dataset. It consists of 14,945 RGB images with diverse weather noise, along with the corresponding ground truth annotations and weather labels. To verify algorithm generalization, WXSOD contains two test sets, i.e., a synthesized test set and a real test set. The former is generated by adding weather noise to clean images, while the latter contains real-world weather noise. Based on WXSOD, we propose an efficient baseline, termed Weather-aware Feature Aggregation Network (WFANet), which adopts a fully supervised two-branch architecture. Specifically, the weather prediction branch mines weather-related deep features, while the saliency detection branch fuses semantic features extracted from the backbone with weather features for SOD. Comprehensive comparisons against 17 SOD methods shows that our WFANet achieves superior performance on WXSOD. The code and benchmark results will be made publicly available at https://github.com/C-water/WXSOD




Abstract:Quantifiable image patterns associated with disease progression and treatment response are critical tools for guiding individual treatment, and for developing novel therapies. Here, we show that unsupervised machine learning can identify a pattern vocabulary of liver tissue in magnetic resonance images that quantifies treatment response in diffuse liver disease. Deep clustering networks simultaneously encode and cluster patches of medical images into a low-dimensional latent space to establish a tissue vocabulary. The resulting tissue types capture differential tissue change and its location in the liver associated with treatment response. We demonstrate the utility of the vocabulary on a randomized controlled trial cohort of non-alcoholic steatohepatitis patients. First, we use the vocabulary to compare longitudinal liver change in a placebo and a treatment cohort. Results show that the method identifies specific liver tissue change pathways associated with treatment, and enables a better separation between treatment groups than established non-imaging measures. Moreover, we show that the vocabulary can predict biopsy derived features from non-invasive imaging data. We validate the method on a separate replication cohort to demonstrate the applicability of the proposed method.




Abstract:Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.




Abstract:With the significant advancement of Large Vision-Language Models (VLMs), concerns about their potential misuse and abuse have grown rapidly. Previous studies have highlighted VLMs' vulnerability to jailbreak attacks, where carefully crafted inputs can lead the model to produce content that violates ethical and legal standards. However, existing methods struggle against state-of-the-art VLMs like GPT-4o, due to the over-exposure of harmful content and lack of stealthy malicious guidance. In this work, we propose a novel jailbreak attack framework: Multi-Modal Linkage (MML) Attack. Drawing inspiration from cryptography, MML utilizes an encryption-decryption process across text and image modalities to mitigate over-exposure of malicious information. To align the model's output with malicious intent covertly, MML employs a technique called "evil alignment", framing the attack within a video game production scenario. Comprehensive experiments demonstrate MML's effectiveness. Specifically, MML jailbreaks GPT-4o with attack success rates of 97.80% on SafeBench, 98.81% on MM-SafeBench and 99.07% on HADES-Dataset. Our code is available at https://github.com/wangyu-ovo/MML




Abstract:The automated surface defect detection is a fundamental task in industrial production, and the existing saliencybased works overcome the challenging scenes and give promising detection results. However, the cutting-edge efforts often suffer from large parameter size, heavy computational cost, and slow inference speed, which heavily limits the practical applications. To this end, we devise a multi-scale interactive (MI) module, which employs depthwise convolution (DWConv) and pointwise convolution (PWConv) to independently extract and interactively fuse features of different scales, respectively. Particularly, the MI module can provide satisfactory characterization for defect regions with fewer parameters. Embarking on this module, we propose a lightweight Multi-scale Interactive Network (MINet) to conduct real-time salient object detection of strip steel surface defects. Comprehensive experimental results on SD-Saliency-900 dataset, which contains three kinds of strip steel surface defect detection images (i.e., inclusion, patches, and scratches), demonstrate that the proposed MINet presents comparable detection accuracy with the state-of-the-art methods while running at a GPU speed of 721FPS and a CPU speed of 6.3FPS for 368*368 images with only 0.28M parameters. The code is available at https://github.com/Kunye-Shen/MINet.
Abstract:Depth images and thermal images contain the spatial geometry information and surface temperature information, which can act as complementary information for the RGB modality. However, the quality of the depth and thermal images is often unreliable in some challenging scenarios, which will result in the performance degradation of the two-modal based salient object detection (SOD). Meanwhile, some researchers pay attention to the triple-modal SOD task, where they attempt to explore the complementarity of the RGB image, the depth image, and the thermal image. However, existing triple-modal SOD methods fail to perceive the quality of depth maps and thermal images, which leads to performance degradation when dealing with scenes with low-quality depth and thermal images. Therefore, we propose a quality-aware selective fusion network (QSF-Net) to conduct VDT salient object detection, which contains three subnets including the initial feature extraction subnet, the quality-aware region selection subnet, and the region-guided selective fusion subnet. Firstly, except for extracting features, the initial feature extraction subnet can generate a preliminary prediction map from each modality via a shrinkage pyramid architecture. Then, we design the weakly-supervised quality-aware region selection subnet to generate the quality-aware maps. Concretely, we first find the high-quality and low-quality regions by using the preliminary predictions, which further constitute the pseudo label that can be used to train this subnet. Finally, the region-guided selective fusion subnet purifies the initial features under the guidance of the quality-aware maps, and then fuses the triple-modal features and refines the edge details of prediction maps through the intra-modality and inter-modality attention (IIA) module and the edge refinement (ER) module, respectively. Extensive experiments are performed on VDT-2048