Abstract:Low-Rank Adaptation (LoRA) fusion has emerged as a key technique for reusing and composing learned subject and style representations for controllable generation without costly retraining. However, existing methods rely on weight-based merging, where one LoRA often dominates the other, leading to interference and degraded fidelity. This interference is structural: separately trained LoRAs occupy low-rank high-dimensional subspaces, leading to non-orthogonal and overlapping representations. In this work, we analyze the internal structure of LoRAs and find their generative behavior is dominated by a few principal directions in the low-rank subspace, which should remain free from interference during fusion. To achieve this, we propose Null Space Projection LoRA (NP-LoRA), a projection-based framework for LoRA fusion that enforces subspace separation to prevent structural interference among principal directions. Specifically, we first extract principal style directions via singular value decomposition (SVD) and then project the subject LoRA into its orthogonal null space. Furthermore, we introduce a soft projection mechanism that enables smooth control over the trade-off between subject fidelity and style consistency. Experiments show NP-LoRA consistently improves fusion quality over strong baselines (e.g., DINO and CLIP-based metrics, with human and LLM preference scores), and applies broadly across backbones and LoRA pairs without retraining.




Abstract:With the significant advancement of Large Vision-Language Models (VLMs), concerns about their potential misuse and abuse have grown rapidly. Previous studies have highlighted VLMs' vulnerability to jailbreak attacks, where carefully crafted inputs can lead the model to produce content that violates ethical and legal standards. However, existing methods struggle against state-of-the-art VLMs like GPT-4o, due to the over-exposure of harmful content and lack of stealthy malicious guidance. In this work, we propose a novel jailbreak attack framework: Multi-Modal Linkage (MML) Attack. Drawing inspiration from cryptography, MML utilizes an encryption-decryption process across text and image modalities to mitigate over-exposure of malicious information. To align the model's output with malicious intent covertly, MML employs a technique called "evil alignment", framing the attack within a video game production scenario. Comprehensive experiments demonstrate MML's effectiveness. Specifically, MML jailbreaks GPT-4o with attack success rates of 97.80% on SafeBench, 98.81% on MM-SafeBench and 99.07% on HADES-Dataset. Our code is available at https://github.com/wangyu-ovo/MML