We study the problem of conditional generative modeling based on designated semantics or structures. Existing models that build conditional generators either require massive labeled instances as supervision or are unable to accurately control the semantics of generated samples. We propose structured generative adversarial networks (SGANs) for semi-supervised conditional generative modeling. SGAN assumes the data x is generated conditioned on two independent latent variables: y that encodes the designated semantics, and z that contains other factors of variation. To ensure disentangled semantics in y and z, SGAN builds two collaborative games in the hidden space to minimize the reconstruction error of y and z, respectively. Training SGAN also involves solving two adversarial games that have their equilibrium concentrating at the true joint data distributions p(x, z) and p(x, y), avoiding distributing the probability mass diffusely over data space that MLE-based methods may suffer. We assess SGAN by evaluating its trained networks, and its performance on downstream tasks. We show that SGAN delivers a highly controllable generator, and disentangled representations; it also establishes start-of-the-art results across multiple datasets when applied for semi-supervised image classification (1.27%, 5.73%, 17.26% error rates on MNIST, SVHN and CIFAR-10 using 50, 1000 and 4000 labels, respectively). Benefiting from the separate modeling of y and z, SGAN can generate images with high visual quality and strictly following the designated semantic, and can be extended to a wide spectrum of applications, such as style transfer.
The recently developed variational autoencoders (VAEs) have proved to be an effective confluence of the rich representational power of neural networks with Bayesian methods. However, most work on VAEs use a rather simple prior over the latent variables such as standard normal distribution, thereby restricting its applications to relatively simple phenomena. In this work, we propose hierarchical nonparametric variational autoencoders, which combines tree-structured Bayesian nonparametric priors with VAEs, to enable infinite flexibility of the latent representation space. Both the neural parameters and Bayesian priors are learned jointly using tailored variational inference. The resulting model induces a hierarchical structure of latent semantic concepts underlying the data corpus, and infers accurate representations of data instances. We apply our model in video representation learning. Our method is able to discover highly interpretable activity hierarchies, and obtain improved clustering accuracy and generalization capacity based on the learned rich representations.
Face hallucination is a domain-specific super-resolution problem with the goal to generate high-resolution (HR) faces from low-resolution (LR) input images. In contrast to existing methods that often learn a single patch-to-patch mapping from LR to HR images and are regardless of the contextual interdependency between patches, we propose a novel Attention-aware Face Hallucination (Attention-FH) framework which resorts to deep reinforcement learning for sequentially discovering attended patches and then performing the facial part enhancement by fully exploiting the global interdependency of the image. Specifically, in each time step, the recurrent policy network is proposed to dynamically specify a new attended region by incorporating what happened in the past. The state (i.e., face hallucination result for the whole image) can thus be exploited and updated by the local enhancement network on the selected region. The Attention-FH approach jointly learns the recurrent policy network and local enhancement network through maximizing the long-term reward that reflects the hallucination performance over the whole image. Therefore, our proposed Attention-FH is capable of adaptively personalizing an optimal searching path for each face image according to its own characteristic. Extensive experiments show our approach significantly surpasses the state-of-the-arts on in-the-wild faces with large pose and illumination variations.
Future frame prediction in videos is a promising avenue for unsupervised video representation learning. Video frames are naturally generated by the inherent pixel flows from preceding frames based on the appearance and motion dynamics in the video. However, existing methods focus on directly hallucinating pixel values, resulting in blurry predictions. In this paper, we develop a dual motion Generative Adversarial Net (GAN) architecture, which learns to explicitly enforce future-frame predictions to be consistent with the pixel-wise flows in the video through a dual-learning mechanism. The primal future-frame prediction and dual future-flow prediction form a closed loop, generating informative feedback signals to each other for better video prediction. To make both synthesized future frames and flows indistinguishable from reality, a dual adversarial training method is proposed to ensure that the future-flow prediction is able to help infer realistic future-frames, while the future-frame prediction in turn leads to realistic optical flows. Our dual motion GAN also handles natural motion uncertainty in different pixel locations with a new probabilistic motion encoder, which is based on variational autoencoders. Extensive experiments demonstrate that the proposed dual motion GAN significantly outperforms state-of-the-art approaches on synthesizing new video frames and predicting future flows. Our model generalizes well across diverse visual scenes and shows superiority in unsupervised video representation learning.
In this paper, we investigate a weakly-supervised object detection framework. Most existing frameworks focus on using static images to learn object detectors. However, these detectors often fail to generalize to videos because of the existing domain shift. Therefore, we investigate learning these detectors directly from boring videos of daily activities. Instead of using bounding boxes, we explore the use of action descriptions as supervision since they are relatively easy to gather. A common issue, however, is that objects of interest that are not involved in human actions are often absent in global action descriptions known as "missing label". To tackle this problem, we propose a novel temporal dynamic graph Long Short-Term Memory network (TD-Graph LSTM). TD-Graph LSTM enables global temporal reasoning by constructing a dynamic graph that is based on temporal correlations of object proposals and spans the entire video. The missing label issue for each individual frame can thus be significantly alleviated by transferring knowledge across correlated objects proposals in the whole video. Extensive evaluations on a large-scale daily-life action dataset (i.e., Charades) demonstrates the superiority of our proposed method. We also release object bounding-box annotations for more than 5,000 frames in Charades. We believe this annotated data can also benefit other research on video-based object recognition in the future.
Generative Adversarial Networks (GANs) have recently achieved significant improvement on paired/unpaired image-to-image translation, such as photo$\rightarrow$ sketch and artist painting style transfer. However, existing models can only be capable of transferring the low-level information (e.g. color or texture changes), but fail to edit high-level semantic meanings (e.g., geometric structure or content) of objects. On the other hand, while some researches can synthesize compelling real-world images given a class label or caption, they cannot condition on arbitrary shapes or structures, which largely limits their application scenarios and interpretive capability of model results. In this work, we focus on a more challenging semantic manipulation task, which aims to modify the semantic meaning of an object while preserving its own characteristics (e.g. viewpoints and shapes), such as cow$\rightarrow$sheep, motor$\rightarrow$ bicycle, cat$\rightarrow$dog. To tackle such large semantic changes, we introduce a contrasting GAN (contrast-GAN) with a novel adversarial contrasting objective. Instead of directly making the synthesized samples close to target data as previous GANs did, our adversarial contrasting objective optimizes over the distance comparisons between samples, that is, enforcing the manipulated data be semantically closer to the real data with target category than the input data. Equipped with the new contrasting objective, a novel mask-conditional contrast-GAN architecture is proposed to enable disentangle image background with object semantic changes. Experiments on several semantic manipulation tasks on ImageNet and MSCOCO dataset show considerable performance gain by our contrast-GAN over other conditional GANs. Quantitative results further demonstrate the superiority of our model on generating manipulated results with high visual fidelity and reasonable object semantics.
3D human articulated pose recovery from monocular image sequences is very challenging due to the diverse appearances, viewpoints, occlusions, and also the human 3D pose is inherently ambiguous from the monocular imagery. It is thus critical to exploit rich spatial and temporal long-range dependencies among body joints for accurate 3D pose sequence prediction. Existing approaches usually manually design some elaborate prior terms and human body kinematic constraints for capturing structures, which are often insufficient to exploit all intrinsic structures and not scalable for all scenarios. In contrast, this paper presents a Recurrent 3D Pose Sequence Machine(RPSM) to automatically learn the image-dependent structural constraint and sequence-dependent temporal context by using a multi-stage sequential refinement. At each stage, our RPSM is composed of three modules to predict the 3D pose sequences based on the previously learned 2D pose representations and 3D poses: (i) a 2D pose module extracting the image-dependent pose representations, (ii) a 3D pose recurrent module regressing 3D poses and (iii) a feature adaption module serving as a bridge between module (i) and (ii) to enable the representation transformation from 2D to 3D domain. These three modules are then assembled into a sequential prediction framework to refine the predicted poses with multiple recurrent stages. Extensive evaluations on the Human3.6M dataset and HumanEva-I dataset show that our RPSM outperforms all state-of-the-art approaches for 3D pose estimation.
Human parsing has recently attracted a lot of research interests due to its huge application potentials. However existing datasets have limited number of images and annotations, and lack the variety of human appearances and the coverage of challenging cases in unconstrained environment. In this paper, we introduce a new benchmark "Look into Person (LIP)" that makes a significant advance in terms of scalability, diversity and difficulty, a contribution that we feel is crucial for future developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19 semantic part labels, which are captured from a wider range of viewpoints, occlusions and background complexity. Given these rich annotations we perform detailed analyses of the leading human parsing approaches, gaining insights into the success and failures of these methods. Furthermore, in contrast to the existing efforts on improving the feature discriminative capability, we solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into parsing results without resorting to extra supervision (i.e., no need for specifically labeling human joints in model training). Our self-supervised learning framework can be injected into any advanced neural networks to help incorporate rich high-level knowledge regarding human joints from a global perspective and improve the parsing results. Extensive evaluations on our LIP and the public PASCAL-Person-Part dataset demonstrate the superiority of our method.
Detecting small objects is notoriously challenging due to their low resolution and noisy representation. Existing object detection pipelines usually detect small objects through learning representations of all the objects at multiple scales. However, the performance gain of such ad hoc architectures is usually limited to pay off the computational cost. In this work, we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to "super-resolved" ones, achieving similar characteristics as large objects and thus more discriminative for detection. For this purpose, we propose a new Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones. Specifically, its generator learns to transfer perceived poor representations of the small objects to super-resolved ones that are similar enough to real large objects to fool a competing discriminator. Meanwhile its discriminator competes with the generator to identify the generated representation and imposes an additional perceptual requirement - generated representations of small objects must be beneficial for detection purpose - on the generator. Extensive evaluations on the challenging Tsinghua-Tencent 100K and the Caltech benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts.
Deep learning models can take weeks to train on a single GPU-equipped machine, necessitating scaling out DL training to a GPU-cluster. However, current distributed DL implementations can scale poorly due to substantial parameter synchronization over the network, because the high throughput of GPUs allows more data batches to be processed per unit time than CPUs, leading to more frequent network synchronization. We present Poseidon, an efficient communication architecture for distributed DL on GPUs. Poseidon exploits the layered model structures in DL programs to overlap communication and computation, reducing bursty network communication. Moreover, Poseidon uses a hybrid communication scheme that optimizes the number of bytes required to synchronize each layer, according to layer properties and the number of machines. We show that Poseidon is applicable to different DL frameworks by plugging Poseidon into Caffe and TensorFlow. We show that Poseidon enables Caffe and TensorFlow to achieve 15.5x speed-up on 16 single-GPU machines, even with limited bandwidth (10GbE) and the challenging VGG19-22K network for image classification. Moreover, Poseidon-enabled TensorFlow achieves 31.5x speed-up with 32 single-GPU machines on Inception-V3, a 50% improvement over the open-source TensorFlow (20x speed-up).