Fudan University




Abstract:Existing person re-identification (Re-ID) methods principally deploy the ImageNet-1K dataset for model initialization, which inevitably results in sub-optimal situations due to the large domain gap. One of the key challenges is that building large-scale person Re-ID datasets is time-consuming. Some previous efforts address this problem by collecting person images from the internet e.g., LUPerson, but it struggles to learn from unlabeled, uncontrollable, and noisy data. In this paper, we present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities without requiring any cost of data collection and annotation. Technically, this paradigm unfolds in two stages: generation and filtering. During the generation stage, we propose Language Prompts Enhancement (LPE) to ensure the ID consistency between the input image sequence and the generated images. In the diffusion process, we propose a Diversity Injection (DI) module to increase attribute diversity. In order to make the generated data have higher quality, we apply a Re-ID confidence threshold filter to further remove the low-quality images. Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities. Next, we build a stronger person Re-ID backbone pre-trained on our Diff-Person. Extensive experiments are conducted on four person Re-ID benchmarks in six widely used settings. Compared with other pre-training and self-supervised competitors, our approach shows significant superiority.




Abstract:In real-world scenarios, person Re-IDentification (Re-ID) systems need to be adaptable to changes in space and time. Therefore, the adaptation of Re-ID models to new domains while preserving previously acquired knowledge is crucial, known as Lifelong person Re-IDentification (LReID). Advanced LReID methods rely on replaying exemplars from old domains and applying knowledge distillation in logits with old models. However, due to privacy concerns, retaining previous data is inappropriate. Additionally, the fine-grained and open-set characteristics of Re-ID limit the effectiveness of the distillation paradigm for accumulating knowledge. We argue that a Re-ID model trained on diverse and challenging pedestrian images at a large scale can acquire robust and general human semantic knowledge. These semantics can be readily utilized as shared knowledge for lifelong applications. In this paper, we identify the challenges and discrepancies associated with adapting a pre-trained model to each application domain, and introduce the Distribution Aligned Semantics Adaption (DASA) framework. It efficiently adjusts Batch Normalization (BN) to mitigate interference from data distribution discrepancy and freezes the pre-trained convolutional layers to preserve shared knowledge. Additionally, we propose the lightweight Semantics Adaption (SA) module, which effectively adapts learned semantics to enhance pedestrian representations. Extensive experiments demonstrate the remarkable superiority of our proposed framework over advanced LReID methods, and it exhibits significantly reduced storage consumption. DASA presents a novel and cost-effective perspective on effectively adapting pre-trained models for LReID.




Abstract:With the continuous expansion of intelligent surveillance networks, lifelong person re-identification (LReID) has received widespread attention, pursuing the need of self-evolution across different domains. However, existing LReID studies accumulate knowledge with the assumption that people would not change their clothes. In this paper, we propose a more practical task, namely lifelong person re-identification with hybrid clothing states (LReID-Hybrid), which takes a series of cloth-changing and cloth-consistent domains into account during lifelong learning. To tackle the challenges of knowledge granularity mismatch and knowledge presentation mismatch that occurred in LReID-Hybrid, we take advantage of the consistency and generalization of the text space, and propose a novel framework, dubbed $Teata$, to effectively align, transfer and accumulate knowledge in an "image-text-image" closed loop. Concretely, to achieve effective knowledge transfer, we design a Structured Semantic Prompt (SSP) learning to decompose the text prompt into several structured pairs to distill knowledge from the image space with a unified granularity of text description. Then, we introduce a Knowledge Adaptation and Projection strategy (KAP), which tunes text knowledge via a slow-paced learner to adapt to different tasks without catastrophic forgetting. Extensive experiments demonstrate the superiority of our proposed $Teata$ for LReID-Hybrid as well as on conventional LReID benchmarks over advanced methods.




Abstract:Cloth-changing person Re-IDentification (Re-ID) aims at recognizing the same person with clothing changes across non-overlapping cameras. Conventional person Re-ID methods usually bias the model's focus on cloth-related appearance features rather than identity-sensitive features associated with biological traits. Recently, advanced cloth-changing person Re-ID methods either resort to identity-related auxiliary modalities (e.g., sketches, silhouettes, keypoints and 3D shapes) or clothing labels to mitigate the impact of clothes. However, relying on unpractical and inflexible auxiliary modalities or annotations limits their real-world applicability. In this paper, we promote cloth-changing person Re-ID by effectively leveraging abundant semantics present within pedestrian images without the need for any auxiliaries. Specifically, we propose the Content and Salient Semantics Collaboration (CSSC) framework, facilitating cross-parallel semantics interaction and refinement. Our framework is simple yet effective, and the vital design is the Semantics Mining and Refinement (SMR) module. It extracts robust identity features about content and salient semantics, while mitigating interference from clothing appearances effectively. By capitalizing on the mined abundant semantic features, our proposed approach achieves state-of-the-art performance on three cloth-changing benchmarks as well as conventional benchmarks, demonstrating its superiority over advanced competitors.




Abstract:In autonomous driving, 3D occupancy prediction outputs voxel-wise status and semantic labels for more comprehensive understandings of 3D scenes compared with traditional perception tasks, such as 3D object detection and bird's-eye view (BEV) semantic segmentation. Recent researchers have extensively explored various aspects of this task, including view transformation techniques, ground-truth label generation, and elaborate network design, aiming to achieve superior performance. However, the inference speed, crucial for running on an autonomous vehicle, is neglected. To this end, a new method, dubbed FastOcc, is proposed. By carefully analyzing the network effect and latency from four parts, including the input image resolution, image backbone, view transformation, and occupancy prediction head, it is found that the occupancy prediction head holds considerable potential for accelerating the model while keeping its accuracy. Targeted at improving this component, the time-consuming 3D convolution network is replaced with a novel residual-like architecture, where features are mainly digested by a lightweight 2D BEV convolution network and compensated by integrating the 3D voxel features interpolated from the original image features. Experiments on the Occ3D-nuScenes benchmark demonstrate that our FastOcc achieves state-of-the-art results with a fast inference speed.
Abstract:Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space. In this paper, we extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously. Firstly, we leverage an ensemble of publicly available 3D datasets to facilitate the training of large-scale models. It consists of a comprehensive collection of approximately 900,000 objects, with multiple properties of meshes, points, voxels, rendered images, and text captions. This diverse labeled dataset, termed Objaverse-Mix, empowers our model to learn from a wide range of object variations. However, directly applying 3D auto-regression encounters critical challenges of high computational demands on volumetric grids and ambiguous auto-regressive order along grid dimensions, resulting in inferior quality of 3D shapes. To this end, we then present a novel framework Argus3D in terms of capacity. Concretely, our approach introduces discrete representation learning based on a latent vector instead of volumetric grids, which not only reduces computational costs but also preserves essential geometric details by learning the joint distributions in a more tractable order. The capacity of conditional generation can thus be realized by simply concatenating various conditioning inputs to the latent vector, such as point clouds, categories, images, and texts. In addition, thanks to the simplicity of our model architecture, we naturally scale up our approach to a larger model with an impressive 3.6 billion parameters, further enhancing the quality of versatile 3D generation. Extensive experiments on four generation tasks demonstrate that Argus3D can synthesize diverse and faithful shapes across multiple categories, achieving remarkable performance.




Abstract:Endowing machines with abstract reasoning ability has been a long-term research topic in artificial intelligence. Raven's Progressive Matrix (RPM) is widely used to probe abstract visual reasoning in machine intelligence, where models need to understand the underlying rules and select the missing bottom-right images out of candidate sets to complete image matrices. The participators can display powerful reasoning ability by inferring the underlying attribute-changing rules and imagining the missing images at arbitrary positions. However, existing solvers can hardly manifest such an ability in realistic RPM problems. In this paper, we propose a conditional generative model to solve answer generation problems through Rule AbstractIon and SElection (RAISE) in the latent space. RAISE encodes image attributes as latent concepts and decomposes underlying rules into atomic rules by means of concepts, which are abstracted as global learnable parameters. When generating the answer, RAISE selects proper atomic rules out of the global knowledge set for each concept and composes them into the integrated rule of an RPM. In most configurations, RAISE outperforms the compared generative solvers in tasks of generating bottom-right and arbitrary-position answers. We test RAISE in the odd-one-out task and two held-out configurations to demonstrate how learning decoupled latent concepts and atomic rules helps find the image breaking the underlying rules and handle RPMs with unseen combinations of rules and attributes.




Abstract:Visual scenes are extremely diverse, not only because there are infinite possible combinations of objects and backgrounds but also because the observations of the same scene may vary greatly with the change of viewpoints. When observing a multi-object visual scene from multiple viewpoints, humans can perceive the scene compositionally from each viewpoint while achieving the so-called ``object constancy'' across different viewpoints, even though the exact viewpoints are untold. This ability is essential for humans to identify the same object while moving and to learn from vision efficiently. It is intriguing to design models that have a similar ability. In this paper, we consider a novel problem of learning compositional scene representations from multiple unspecified (i.e., unknown and unrelated) viewpoints without using any supervision and propose a deep generative model which separates latent representations into a viewpoint-independent part and a viewpoint-dependent part to solve this problem. During the inference, latent representations are randomly initialized and iteratively updated by integrating the information in different viewpoints with neural networks. Experiments on several specifically designed synthetic datasets have shown that the proposed method can effectively learn from multiple unspecified viewpoints.
Abstract:Recent unsupervised anomaly detection methods often rely on feature extractors pretrained with auxiliary datasets or on well-crafted anomaly-simulated samples. However, this might limit their adaptability to an increasing set of anomaly detection tasks due to the priors in the selection of auxiliary datasets or the strategy of anomaly simulation. To tackle this challenge, we first introduce a prior-less anomaly generation paradigm and subsequently develop an innovative unsupervised anomaly detection framework named GRAD, grounded in this paradigm. GRAD comprises three essential components: (1) a diffusion model (PatchDiff) to generate contrastive patterns by preserving the local structures while disregarding the global structures present in normal images, (2) a self-supervised reweighting mechanism to handle the challenge of long-tailed and unlabeled contrastive patterns generated by PatchDiff, and (3) a lightweight patch-level detector to efficiently distinguish the normal patterns and reweighted contrastive patterns. The generation results of PatchDiff effectively expose various types of anomaly patterns, e.g. structural and logical anomaly patterns. In addition, extensive experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation and demonstrate that GRAD achieves competitive anomaly detection accuracy and superior inference speed.
Abstract:With the increasing availability of Foundation Models, federated tuning has garnered attention in the field of federated learning, utilizing data and computation resources from multiple clients to collaboratively fine-tune foundation models. However, in real-world federated scenarios, there often exist a multitude of heterogeneous clients with varying computation and communication resources, rendering them incapable of supporting the entire model fine-tuning process. In response to this challenge, we propose a novel federated tuning algorithm, FedRA. The implementation of FedRA is straightforward and can be seamlessly integrated into any transformer-based model without the need for further modification to the original model. Specifically, in each communication round, FedRA randomly generates an allocation matrix. For resource-constrained clients, it reorganizes a small number of layers from the original model based on the allocation matrix and fine-tunes using LoRA. Subsequently, the server aggregates the updated LoRA parameters from the clients according to the current allocation matrix into the corresponding layers of the original model. It is worth noting that FedRA also supports scenarios where none of the clients can support the entire global model, which is an impressive advantage. We conduct experiments on two large-scale image datasets, DomainNet and NICO++, under various non-iid settings. The results demonstrate that FedRA outperforms the compared methods significantly. The source code is available at \url{https://github.com/leondada/FedRA}.