Abstract:Tumor is a leading cause of death worldwide, with an estimated 10 million deaths attributed to tumor-related diseases every year. AI-driven tumor recognition unlocks new possibilities for more precise and intelligent tumor screening and diagnosis. However, the progress is heavily hampered by the scarcity of annotated datasets, which demands extensive annotation efforts by radiologists. To tackle this challenge, we introduce FreeTumor, an innovative Generative AI (GAI) framework to enable large-scale tumor synthesis for mitigating data scarcity. Specifically, FreeTumor effectively leverages a combination of limited labeled data and large-scale unlabeled data for tumor synthesis training. Unleashing the power of large-scale data, FreeTumor is capable of synthesizing a large number of realistic tumors on images for augmenting training datasets. To this end, we create the largest training dataset for tumor synthesis and recognition by curating 161,310 publicly available Computed Tomography (CT) volumes from 33 sources, with only 2.3% containing annotated tumors. To validate the fidelity of synthetic tumors, we engaged 13 board-certified radiologists in a Visual Turing Test to discern between synthetic and real tumors. Rigorous clinician evaluation validates the high quality of our synthetic tumors, as they achieved only 51.1% sensitivity and 60.8% accuracy in distinguishing our synthetic tumors from real ones. Through high-quality tumor synthesis, FreeTumor scales up the recognition training datasets by over 40 times, showcasing a notable superiority over state-of-the-art AI methods including various synthesis methods and foundation models. These findings indicate promising prospects of FreeTumor in clinical applications, potentially advancing tumor treatments and improving the survival rates of patients.
Abstract:Text-to-Audio (TTA) generation is an emerging area within AI-generated content (AIGC), where audio is created from natural language descriptions. Despite growing interest, developing robust TTA models remains challenging due to the scarcity of well-labeled datasets and the prevalence of noisy or inaccurate captions in large-scale, weakly labeled corpora. To address these challenges, we propose CosyAudio, a novel framework that utilizes confidence scores and synthetic captions to enhance the quality of audio generation. CosyAudio consists of two core components: AudioCapTeller and an audio generator. AudioCapTeller generates synthetic captions for audio and provides confidence scores to evaluate their accuracy. The audio generator uses these synthetic captions and confidence scores to enable quality-aware audio generation. Additionally, we introduce a self-evolving training strategy that iteratively optimizes CosyAudio across both well-labeled and weakly-labeled datasets. Initially trained with well-labeled data, AudioCapTeller leverages its assessment capabilities on weakly-labeled datasets for high-quality filtering and reinforcement learning, which further improves its performance. The well-trained AudioCapTeller refines corpora by generating new captions and confidence scores, serving for the audio generator training. Extensive experiments on open-source datasets demonstrate that CosyAudio outperforms existing models in automated audio captioning, generates more faithful audio, and exhibits strong generalization across diverse scenarios.
Abstract:Style voice conversion aims to transform the speaking style of source speech into a desired style while keeping the original speaker's identity. However, previous style voice conversion approaches primarily focus on well-defined domains such as emotional aspects, limiting their practical applications. In this study, we present ZSVC, a novel Zero-shot Style Voice Conversion approach that utilizes a speech codec and a latent diffusion model with speech prompting mechanism to facilitate in-context learning for speaking style conversion. To disentangle speaking style and speaker timbre, we introduce information bottleneck to filter speaking style in the source speech and employ Uncertainty Modeling Adaptive Instance Normalization (UMAdaIN) to perturb the speaker timbre in the style prompt. Moreover, we propose a novel adversarial training strategy to enhance in-context learning and improve style similarity. Experiments conducted on 44,000 hours of speech data demonstrate the superior performance of ZSVC in generating speech with diverse speaking styles in zero-shot scenarios.
Abstract:Recent advances in text-conditioned video diffusion have greatly improved video quality. However, these methods offer limited or sometimes no control to users on camera aspects, including dynamic camera motion, zoom, distorted lens and focus shifts. These motion and optical aspects are crucial for adding controllability and cinematic elements to generation frameworks, ultimately resulting in visual content that draws focus, enhances mood, and guides emotions according to filmmakers' controls. In this paper, we aim to close the gap between controllable video generation and camera optics. To achieve this, we propose AKiRa (Augmentation Kit on Rays), a novel augmentation framework that builds and trains a camera adapter with a complex camera model over an existing video generation backbone. It enables fine-tuned control over camera motion as well as complex optical parameters (focal length, distortion, aperture) to achieve cinematic effects such as zoom, fisheye effect, and bokeh. Extensive experiments demonstrate AKiRa's effectiveness in combining and composing camera optics while outperforming all state-of-the-art methods. This work sets a new landmark in controlled and optically enhanced video generation, paving the way for future optical video generation methods.
Abstract:Image rendering from line drawings is vital in design and image generation technologies reduce costs, yet professional line drawings demand preserving complex details. Text prompts struggle with accuracy, and image translation struggles with consistency and fine-grained control. We present LineArt, a framework that transfers complex appearance onto detailed design drawings, facilitating design and artistic creation. It generates high-fidelity appearance while preserving structural accuracy by simulating hierarchical visual cognition and integrating human artistic experience to guide the diffusion process. LineArt overcomes the limitations of current methods in terms of difficulty in fine-grained control and style degradation in design drawings. It requires no precise 3D modeling, physical property specs, or network training, making it more convenient for design tasks. LineArt consists of two stages: a multi-frequency lines fusion module to supplement the input design drawing with detailed structural information and a two-part painting process for Base Layer Shaping and Surface Layer Coloring. We also present a new design drawing dataset ProLines for evaluation. The experiments show that LineArt performs better in accuracy, realism, and material precision compared to SOTAs.
Abstract:Construction robots operate in unstructured construction sites, where effective visual perception is crucial for ensuring safe and seamless operations. However, construction robots often handle large elements and perform tasks across expansive areas, resulting in occluded views from onboard cameras and necessitating the use of multiple environmental cameras to capture the large task space. This study proposes a multi-robot coordination framework in which a team of supervising robots equipped with cameras adaptively adjust their poses to visually perceive the operation of the primary construction robot and its surrounding environment. A viewpoint selection method is proposed to determine each supervising robot's camera viewpoint, optimizing visual coverage and proximity while considering the visibility of the upcoming construction robot operation. A case study on prefabricated wooden frame installation demonstrates the system's feasibility, and further experiments are conducted to validate the performance and robustness of the proposed viewpoint selection method across various settings. This research advances visual perception of robotic construction processes and paves the way for integrating computer vision techniques to enable real-time adaption and responsiveness. Such advancements contribute to the safe and efficient operation of construction robots in inherently unstructured construction sites.
Abstract:We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introduce autoregressive noise schedules to enable stable long-horizon generations. Our dataset is comprised of 4000+ hours of multimodal data across domains like autonomous driving, egocentric human activities, and drone flights. Pseudo-labels are used to get depth maps, ego-trajectories, and human poses. We use a comprehensive evaluation framework, including a new Control of Object Manipulation (COM) metric, to assess controllability. Experiments show GEM excels at generating diverse, controllable scenarios and temporal consistency over long generations. Code, models, and datasets are fully open-sourced.
Abstract:Museums serve as vital repositories of cultural heritage and historical artifacts spanning diverse epochs, civilizations, and regions, preserving well-documented collections. Data reveal key attributes such as age, origin, material, and cultural significance. Understanding museum exhibits from their images requires reasoning beyond visual features. In this work, we facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs in the standard museum catalog format for exhibits from all around the world; (b) training large vision-language models on the collected dataset; (c) benchmarking their ability on five visual question answering tasks. The complete dataset is labeled by museum experts, ensuring the quality as well as the practical significance of the labels. We train two VLMs from different categories: the BLIP model, with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through exhaustive experiments, we provide several insights on the complex and fine-grained understanding of museum exhibits. In particular, we show that some questions whose answers can often be derived directly from visual features are well answered by both types of models. On the other hand, questions that require the grounding of the visual features in repositories of human knowledge are better answered by the large vision-language models, thus demonstrating their superior capacity to perform the desired reasoning. Find our dataset, benchmarks, and source code at: https://github.com/insait-institute/Museum-65
Abstract:3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered by current works. In this work, we address this shortcoming and introduce (1) an expertly curated dataset in the Universal Scene Description (USD) format, featuring high-quality manual annotations, for instance, segmentation and articulation on 280 indoor scenes; (2) a learning-based model together with a novel baseline capable of predicting part segmentation along with a full specification of motion attributes, including motion type, articulated and interactable parts, and motion parameters; (3) a benchmark serving to compare upcoming methods for the task at hand. Overall, our dataset provides 8 types of annotations - object and part segmentations, motion types, movable and interactable parts, motion parameters, connectivity, and object mass annotations. With its broad and high-quality annotations, the data provides the basis for holistic 3D scene understanding models. All data is provided in the USD format, allowing interoperability and easy integration with downstream tasks. We provide open access to our dataset, benchmark, and method's source code.
Abstract:Advances in video generation have significantly improved the realism and quality of created scenes. This has fueled interest in developing intuitive tools that let users leverage video generation as world simulators. Text-to-video (T2V) generation is one such approach, enabling video creation from text descriptions only. Yet, due to the inherent ambiguity in texts and the limited temporal information offered by text prompts, researchers have explored additional control signals like trajectory-guided systems, for more accurate T2V generation. Nonetheless, methods to evaluate whether T2V models can generate realistic interactions between multiple objects are lacking. We introduce InTraGen, a pipeline for improved trajectory-based generation of object interaction scenarios. We propose 4 new datasets and a novel trajectory quality metric to evaluate the performance of the proposed InTraGen. To achieve object interaction, we introduce a multi-modal interaction encoding pipeline with an object ID injection mechanism that enriches object-environment interactions. Our results demonstrate improvements in both visual fidelity and quantitative performance. Code and datasets are available at https://github.com/insait-institute/InTraGen