Abstract:Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets.
Abstract:Recent advances in large-scale text-to-image generation models have led to a surge in subject-driven text-to-image generation, which aims to produce customized images that align with textual descriptions while preserving the identity of specific subjects. Despite significant progress, current methods struggle to disentangle identity-relevant information from identity-irrelevant details in the input images, resulting in overfitting or failure to maintain subject identity. In this work, we propose a novel framework that improves the separation of identity-related and identity-unrelated features and introduces an innovative feature fusion mechanism to improve the quality and text alignment of generated images. Our framework consists of two key components: an Implicit-Explicit foreground-background Decoupling Module (IEDM) and a Feature Fusion Module (FFM) based on a Mixture of Experts (MoE). IEDM combines learnable adapters for implicit decoupling at the feature level with inpainting techniques for explicit foreground-background separation at the image level. FFM dynamically integrates identity-irrelevant features with identity-related features, enabling refined feature representations even in cases of incomplete decoupling. In addition, we introduce three complementary loss functions to guide the decoupling process. Extensive experiments demonstrate the effectiveness of our proposed method in enhancing image generation quality, improving flexibility in scene adaptation, and increasing the diversity of generated outputs across various textual descriptions.
Abstract:Significant progress has been made in video restoration under rainy conditions over the past decade, largely propelled by advancements in deep learning. Nevertheless, existing methods that depend on paired data struggle to generalize effectively to real-world scenarios, primarily due to the disparity between synthetic and authentic rain effects. To address these limitations, we propose a dual-branch spatio-temporal state-space model to enhance rain streak removal in video sequences. Specifically, we design spatial and temporal state-space model layers to extract spatial features and incorporate temporal dependencies across frames, respectively. To improve multi-frame feature fusion, we derive a dynamic stacking filter, which adaptively approximates statistical filters for superior pixel-wise feature refinement. Moreover, we develop a median stacking loss to enable semi-supervised learning by generating pseudo-clean patches based on the sparsity prior of rain. To further explore the capacity of deraining models in supporting other vision-based tasks in rainy environments, we introduce a novel real-world benchmark focused on object detection and tracking in rainy conditions. Our method is extensively evaluated across multiple benchmarks containing numerous synthetic and real-world rainy videos, consistently demonstrating its superiority in quantitative metrics, visual quality, efficiency, and its utility for downstream tasks.
Abstract:Recent advances in multimodal large language models (MLLMs) have demonstrated strong capabilities in understanding general visual content. However, these general-domain MLLMs perform poorly in face perception tasks, often producing inaccurate or misleading responses to face-specific queries. To address this gap, we propose FaceInsight, the versatile face perception MLLM that provides fine-grained facial information. Our approach introduces visual-textual alignment of facial knowledge to model both uncertain dependencies and deterministic relationships among facial information, mitigating the limitations of language-driven reasoning. Additionally, we incorporate face segmentation maps as an auxiliary perceptual modality, enriching the visual input with localized structural cues to enhance semantic understanding. Comprehensive experiments and analyses across three face perception tasks demonstrate that FaceInsight consistently outperforms nine compared MLLMs under both training-free and fine-tuned settings.
Abstract:Transformer-based trackers have achieved promising success and become the dominant tracking paradigm due to their accuracy and efficiency. Despite the substantial progress, most of the existing approaches tackle object tracking as a deterministic coordinate regression problem, while the target localization uncertainty has been greatly overlooked, which hampers trackers' ability to maintain reliable target state prediction in challenging scenarios. To address this issue, we propose UncTrack, a novel uncertainty-aware transformer tracker that predicts the target localization uncertainty and incorporates this uncertainty information for accurate target state inference. Specifically, UncTrack utilizes a transformer encoder to perform feature interaction between template and search images. The output features are passed into an uncertainty-aware localization decoder (ULD) to coarsely predict the corner-based localization and the corresponding localization uncertainty. Then the localization uncertainty is sent into a prototype memory network (PMN) to excavate valuable historical information to identify whether the target state prediction is reliable or not. To enhance the template representation, the samples with high confidence are fed back into the prototype memory bank for memory updating, making the tracker more robust to challenging appearance variations. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods. Our code is available at https://github.com/ManOfStory/UncTrack.
Abstract:Ensuring a stable power supply in rural areas relies heavily on effective inspection of power equipment, particularly transmission lines (TLs). However, detecting TLs from aerial imagery can be challenging when dealing with misalignments between visible light (RGB) and infrared (IR) images, as well as mismatched high- and low-level features in convolutional networks. To address these limitations, we propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection. Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions. We employ MobileNet-based encoders for both RGB and IR inputs to accommodate edge-computing constraints and reduce computational overhead. Experimental results on diverse weather and lighting conditionsfog, night, snow, and daytimedemonstrate the superiority and robustness of our approach compared to state-of-the-art methods, resulting in fewer false positives, enhanced boundary delineation, and better overall detection performance. This framework thus shows promise for practical large-scale power line inspections with unmanned aerial vehicles.
Abstract:Gaze estimation methods encounter significant performance deterioration when being evaluated across different domains, because of the domain gap between the testing and training data. Existing methods try to solve this issue by reducing the deviation of data distribution, however, they ignore the existence of label deviation in the data due to the acquisition mechanism of the gaze label and the individual physiological differences. In this paper, we first point out that the influence brought by the label deviation cannot be ignored, and propose a gaze label alignment algorithm (GLA) to eliminate the label distribution deviation. Specifically, we first train the feature extractor on all domains to get domain invariant features, and then select an anchor domain to train the gaze regressor. We predict the gaze label on remaining domains and use a mapping function to align the labels. Finally, these aligned labels can be used to train gaze estimation models. Therefore, our method can be combined with any existing method. Experimental results show that our GLA method can effectively alleviate the label distribution shift, and SOTA gaze estimation methods can be further improved obviously.
Abstract:With the continuous improvement of device imaging resolution, the popularity of Ultra-High-Definition (UHD) images is increasing. Unfortunately, existing methods for fusing multi-exposure images in dynamic scenes are designed for low-resolution images, which makes them inefficient for generating high-quality UHD images on a resource-constrained device. To alleviate the limitations of extremely long-sequence inputs, inspired by the Large Language Model (LLM) for processing infinitely long texts, we propose a novel learning paradigm to achieve UHD multi-exposure dynamic scene image fusion on a single consumer-grade GPU, named Infinite Pixel Learning (IPL). The design of our approach comes from three key components: The first step is to slice the input sequences to relieve the pressure generated by the model processing the data stream; Second, we develop an attention cache technique, which is similar to KV cache for infinite data stream processing; Finally, we design a method for attention cache compression to alleviate the storage burden of the cache on the device. In addition, we provide a new UHD benchmark to evaluate the effectiveness of our method. Extensive experimental results show that our method maintains high-quality visual performance while fusing UHD dynamic multi-exposure images in real-time (>40fps) on a single consumer-grade GPU.
Abstract:Benefiting from their powerful generative capabilities, pretrained diffusion models have garnered significant attention for real-world image super-resolution (Real-SR). Existing diffusion-based SR approaches typically utilize semantic information from degraded images and restoration prompts to activate prior for producing realistic high-resolution images. However, general-purpose pretrained diffusion models, not designed for restoration tasks, often have suboptimal prior, and manually defined prompts may fail to fully exploit the generated potential. To address these limitations, we introduce RAP-SR, a novel restoration prior enhancement approach in pretrained diffusion models for Real-SR. First, we develop the High-Fidelity Aesthetic Image Dataset (HFAID), curated through a Quality-Driven Aesthetic Image Selection Pipeline (QDAISP). Our dataset not only surpasses existing ones in fidelity but also excels in aesthetic quality. Second, we propose the Restoration Priors Enhancement Framework, which includes Restoration Priors Refinement (RPR) and Restoration-Oriented Prompt Optimization (ROPO) modules. RPR refines the restoration prior using the HFAID, while ROPO optimizes the unique restoration identifier, improving the quality of the resulting images. RAP-SR effectively bridges the gap between general-purpose models and the demands of Real-SR by enhancing restoration prior. Leveraging the plug-and-play nature of RAP-SR, our approach can be seamlessly integrated into existing diffusion-based SR methods, boosting their performance. Extensive experiments demonstrate its broad applicability and state-of-the-art results. Codes and datasets will be available upon acceptance.
Abstract:Owing to the robust priors of diffusion models, recent approaches have shown promise in addressing real-world super-resolution (Real-SR). However, achieving semantic consistency and perceptual naturalness to meet human perception demands remains difficult, especially under conditions of heavy degradation and varied input complexities. To tackle this, we propose Hero-SR, a one-step diffusion-based SR framework explicitly designed with human perception priors. Hero-SR consists of two novel modules: the Dynamic Time-Step Module (DTSM), which adaptively selects optimal diffusion steps for flexibly meeting human perceptual standards, and the Open-World Multi-modality Supervision (OWMS), which integrates guidance from both image and text domains through CLIP to improve semantic consistency and perceptual naturalness. Through these modules, Hero-SR generates high-resolution images that not only preserve intricate details but also reflect human perceptual preferences. Extensive experiments validate that Hero-SR achieves state-of-the-art performance in Real-SR. The code will be publicly available upon paper acceptance.