Abstract:The introduction of generative models has significantly advanced image super-resolution (SR) in handling real-world degradations. However, they often incur fidelity-related issues, particularly distorting textual structures. In this paper, we introduce a novel diffusion-based SR framework, namely TADiSR, which integrates text-aware attention and joint segmentation decoders to recover not only natural details but also the structural fidelity of text regions in degraded real-world images. Moreover, we propose a complete pipeline for synthesizing high-quality images with fine-grained full-image text masks, combining realistic foreground text regions with detailed background content. Extensive experiments demonstrate that our approach substantially enhances text legibility in super-resolved images, achieving state-of-the-art performance across multiple evaluation metrics and exhibiting strong generalization to real-world scenarios. Our code is available at \href{https://github.com/mingcv/TADiSR}{here}.
Abstract:Owing to the robust priors of diffusion models, recent approaches have shown promise in addressing real-world super-resolution (Real-SR). However, achieving semantic consistency and perceptual naturalness to meet human perception demands remains difficult, especially under conditions of heavy degradation and varied input complexities. To tackle this, we propose Hero-SR, a one-step diffusion-based SR framework explicitly designed with human perception priors. Hero-SR consists of two novel modules: the Dynamic Time-Step Module (DTSM), which adaptively selects optimal diffusion steps for flexibly meeting human perceptual standards, and the Open-World Multi-modality Supervision (OWMS), which integrates guidance from both image and text domains through CLIP to improve semantic consistency and perceptual naturalness. Through these modules, Hero-SR generates high-resolution images that not only preserve intricate details but also reflect human perceptual preferences. Extensive experiments validate that Hero-SR achieves state-of-the-art performance in Real-SR. The code will be publicly available upon paper acceptance.