Abstract:Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
Abstract:Group Relative Policy Optimization (GRPO) has emerged as a promising critic-free reinforcement learning paradigm for reasoning tasks. However, standard GRPO employs a coarse-grained credit assignment mechanism that propagates group-level rewards uniformly to to every token in a sequence, neglecting the varying contribution of individual reasoning steps. We address this limitation by introducing Outcome-grounded Advantage Reshaping (OAR), a fine-grained credit assignment mechanism that redistributes advantages based on how much each token influences the model's final answer. We instantiate OAR via two complementary strategies: (1) OAR-P, which estimates outcome sensitivity through counterfactual token perturbations, serving as a high-fidelity attribution signal; (2) OAR-G, which uses an input-gradient sensitivity proxy to approximate the influence signal with a single backward pass. These importance signals are integrated with a conservative Bi-Level advantage reshaping scheme that suppresses low-impact tokens and boosts pivotal ones while preserving the overall advantage mass. Empirical results on extensive mathematical reasoning benchmarks demonstrate that while OAR-P sets the performance upper bound, OAR-G achieves comparable gains with negligible computational overhead, both significantly outperforming a strong GRPO baseline, pushing the boundaries of critic-free LLM reasoning.
Abstract:Grounding responses in external knowledge represents an effective strategy for mitigating hallucinations in Large Language Models (LLMs). However, current LLMs struggle to seamlessly integrate knowledge while simultaneously maintaining faithfulness (or fidelity) and expressiveness, capabilities that humans naturally possess. This limitation results in outputs that either lack support from external knowledge, thereby compromising faithfulness, or appear overly verbose and unnatural, thus sacrificing expressiveness. In this work, to break the trade-off between faithfulness and expressiveness, we propose Collaborative Decoding (CoDe), a novel approach that dynamically integrates output probabilities generated with and without external knowledge. This integration is guided by distribution divergence and model confidence, enabling the selective activation of relevant and reliable expressions from the model's internal parameters. Furthermore, we introduce a knowledge-aware reranking mechanism that prevents over-reliance on prior parametric knowledge while ensuring proper utilization of provided external information. Through comprehensive experiments, our plug-and-play CoDe framework demonstrates superior performance in enhancing faithfulness without compromising expressiveness across diverse LLMs and evaluation metrics, validating both its effectiveness and generalizability.
Abstract:The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-$\lambda$, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.
Abstract:As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking problem stems from conventional outcome-reward reinforcement learning's systematic neglect in regulating intermediate reasoning steps. This paper proposes Serial-Group Decaying-Reward Policy Optimization (namely S-GRPO), a novel reinforcement learning method that empowers models with the capability to determine the sufficiency of reasoning steps, subsequently triggering early exit of CoT generation. Specifically, unlike GRPO, which samples multiple possible completions (parallel group) in parallel, we select multiple temporal positions in the generation of one CoT to allow the model to exit thinking and instead generate answers (serial group), respectively. For the correct answers in a serial group, we assign rewards that decay according to positions, with lower rewards towards the later ones, thereby reinforcing the model's behavior to generate higher-quality answers at earlier phases with earlier exits of thinking. Empirical evaluations demonstrate compatibility with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill models, achieving 35.4% ~ 61.1\% sequence length reduction with 0.72% ~ 6.08% accuracy improvements across GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond benchmarks.
Abstract:Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
Abstract:Multimodal Large Language Models (MLLMs) have revolutionized video understanding, yet are still limited by context length when processing long videos. Recent methods compress videos by leveraging visual redundancy uniformly, yielding promising results. Nevertheless, our quantitative analysis shows that redundancy varies significantly across time and model layers, necessitating a more flexible compression strategy. We propose AdaReTaKe, a training-free method that flexibly reduces visual redundancy by allocating compression ratios among time and layers with theoretical guarantees. Integrated into state-of-the-art MLLMs, AdaReTaKe improves processing capacity from 256 to 2048 frames while preserving critical information. Experiments on VideoMME, MLVU, LongVideoBench, and LVBench datasets demonstrate that AdaReTaKe outperforms existing methods by 2.3% and 2.8% for 7B and 72B models, respectively, with even greater improvements of 5.9% and 6.0% on the longest LVBench. Our code is available at https://github.com/SCZwangxiao/video-FlexReduc.git.
Abstract:Video Large Language Models (VideoLLMs) have achieved remarkable progress in video understanding. However, existing VideoLLMs often inherit the limitations of their backbone LLMs in handling long sequences, leading to challenges for long video understanding. Common solutions either simply uniformly sample videos' frames or compress visual tokens, which focus primarily on low-level temporal visual redundancy, overlooking high-level knowledge redundancy. This limits the achievable compression rate with minimal loss. To this end. we introduce a training-free method, $\textbf{ReTaKe}$, containing two novel modules DPSelect and PivotKV, to jointly model and reduce both temporal visual redundancy and knowledge redundancy for long video understanding. Specifically, DPSelect identifies keyframes with local maximum peak distance based on their visual features, which are closely aligned with human video perception. PivotKV employs the obtained keyframes as pivots and conducts KV-Cache compression for the non-pivot tokens with low attention scores, which are derived from the learned prior knowledge of LLMs. Experiments on benchmarks VideoMME, MLVU, and LVBench, show that ReTaKe can support 4x longer video sequences with minimal performance loss (<1%) and outperform all similar-size VideoLLMs with 3%-5%, even surpassing or on par with much larger ones. Our code is available at https://github.com/SCZwangxiao/video-ReTaKe
Abstract:Retrieval-based multi-image question answering (QA) task involves retrieving multiple question-related images and synthesizing these images to generate an answer. Conventional "retrieve-then-answer" pipelines often suffer from cascading errors because the training objective of QA fails to optimize the retrieval stage. To address this issue, we propose a novel method to effectively introduce and reference retrieved information into the QA. Given the image set to be retrieved, we employ a multimodal large language model (visual perspective) and a large language model (textual perspective) to obtain multimodal hypothetical summary in question-form and description-form. By combining visual and textual perspectives, MHyS captures image content more specifically and replaces real images in retrieval, which eliminates the modality gap by transforming into text-to-text retrieval and helps improve retrieval. To more advantageously introduce retrieval with QA, we employ contrastive learning to align queries (questions) with MHyS. Moreover, we propose a coarse-to-fine strategy for calculating both sentence-level and word-level similarity scores, to further enhance retrieval and filter out irrelevant details. Our approach achieves a 3.7% absolute improvement over state-of-the-art methods on RETVQA and a 14.5% improvement over CLIP. Comprehensive experiments and detailed ablation studies demonstrate the superiority of our method.




Abstract:The advent of large language models (LLMs) has significantly propelled the advancement of Role-Playing Agents (RPAs). However, current Role-Playing Agents predominantly focus on mimicking a character's fundamental attributes while neglecting the replication of linguistic style, and they are incapable of effectively replicating characters when performing tasks beyond multi-turn dialogues, which results in generated responses that lack authenticity. The reason current RPAs lack this capability is due to the nature of existing character datasets, which lack collections of character quotations and are limited to multi-turn dialogue tasks, constraining the RPA's performance across other task domains and failing to mimic a character's linguistic style. To address this gap, we developed a multi-task role-playing dataset named MRstyle, which encompasses a substantial number of real individuals along with their quotations and covers seven different tasks. On this basis, we develop StyleRPA, a Multi-Task Role-Playing Agent (MRPA) that significantly outperforms recent open-source LLMs and RPAs baselines on 7 tasks including Dialogue, Dictionary, Composition, Story Generation, Product Description, Music Commentary, and Open Question Answering. The code and data will be released.