Abstract:Building an efficient and physically consistent world model from limited observations is a long standing challenge in vision and robotics. Many existing world modeling pipelines are based on implicit generative models, which are hard to train and often lack 3D or physical consistency. On the other hand, explicit 3D methods built from a single state often require multi-stage processing-such as segmentation, background completion, and inpainting-due to occlusions. To address this, we leverage two perturbed observations of the same scene under different object configurations. These dual states offer complementary visibility, alleviating occlusion issues during state transitions and enabling more stable and complete reconstruction. In this paper, we present DSG-World, a novel end-to-end framework that explicitly constructs a 3D Gaussian World model from Dual State observations. Our approach builds dual segmentation-aware Gaussian fields and enforces bidirectional photometric and semantic consistency. We further introduce a pseudo intermediate state for symmetric alignment and design collaborative co-pruning trategies to refine geometric completeness. DSG-World enables efficient real-to-simulation transfer purely in the explicit Gaussian representation space, supporting high-fidelity rendering and object-level scene manipulation without relying on dense observations or multi-stage pipelines. Extensive experiments demonstrate strong generalization to novel views and scene states, highlighting the effectiveness of our approach for real-world 3D reconstruction and simulation.
Abstract:Pruning is a widely used method for compressing Deep Neural Networks (DNNs), where less relevant parameters are removed from a DNN model to reduce its size. However, removing parameters reduces model accuracy, so pruning is typically combined with fine-tuning, and sometimes other operations such as rewinding weights, to recover accuracy. A common approach is to repeatedly prune and then fine-tune, with increasing amounts of model parameters being removed in each step. While straightforward to implement, pruning pipelines that follow this approach are computationally expensive due to the need for repeated fine-tuning. In this paper we propose ICE-Pruning, an iterative pruning pipeline for DNNs that significantly decreases the time required for pruning by reducing the overall cost of fine-tuning, while maintaining a similar accuracy to existing pruning pipelines. ICE-Pruning is based on three main components: i) an automatic mechanism to determine after which pruning steps fine-tuning should be performed; ii) a freezing strategy for faster fine-tuning in each pruning step; and iii) a custom pruning-aware learning rate scheduler to further improve the accuracy of each pruning step and reduce the overall time consumption. We also propose an efficient auto-tuning stage for the hyperparameters (e.g., freezing percentage) introduced by the three components. We evaluate ICE-Pruning on several DNN models and datasets, showing that it can accelerate pruning by up to 9.61x. Code is available at https://github.com/gicLAB/ICE-Pruning
Abstract:The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code.
Abstract:Achieving a consistent and compact 3D segmentation field is crucial for maintaining semantic coherence across views and accurately representing scene structures. Previous 3D scene segmentation methods rely on video segmentation models to address inconsistencies across views, but the absence of spatial information often leads to object misassociation when object temporarily disappear and reappear. Furthermore, in the process of 3D scene reconstruction, segmentation and optimization are often treated as separate tasks. As a result, optimization typically lacks awareness of semantic category information, which can result in floaters with ambiguous segmentation. To address these challenges, we introduce CCGS, a method designed to achieve both view consistent 2D segmentation and a compact 3D Gaussian segmentation field. CCGS incorporates pointmap association and a piecewise-plane constraint. First, we establish pixel correspondence between adjacent images by minimizing the Euclidean distance between their pointmaps. We then redefine object mask overlap accordingly. The Hungarian algorithm is employed to optimize mask association by minimizing the total matching cost, while allowing for partial matches. To further enhance compactness, the piecewise-plane constraint restricts point displacement within local planes during optimization, thereby preserving structural integrity. Experimental results on ScanNet and Replica datasets demonstrate that CCGS outperforms existing methods in both 2D panoptic segmentation and 3D Gaussian segmentation.
Abstract:Quantization of Deep Neural Network (DNN) activations is a commonly used technique to reduce compute and memory demands during DNN inference, which can be particularly beneficial on resource-constrained devices. To achieve high accuracy, existing methods for quantizing activations rely on complex mathematical computations or perform extensive searches for the best hyper-parameters. However, these expensive operations are impractical on devices with limited computation capabilities, memory capacities, and energy budgets. Furthermore, many existing methods do not focus on sub-6-bit (or deep) quantization. To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new method that focuses on sub-6-bit quantization of activations and leverages simple shifting-based operations and Huffman coding to be efficient and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization levels and three different DNN models for two different tasks, image classification and image segmentation, on two different datasets. DQA shows significantly better accuracy (up to 29.28%) compared to the direct quantization method and the state-of-the-art NoisyQuant for sub-6-bit quantization.
Abstract:The increase in open-source availability of Large Language Models (LLMs) has enabled users to deploy them on more and more resource-constrained edge devices to reduce reliance on network connections and provide more privacy. However, the high computation and memory demands of LLMs make their execution on resource-constrained edge devices challenging and inefficient. To address this issue, designing new and efficient edge accelerators for LLM inference is crucial. FPGA-based accelerators are ideal for LLM acceleration due to their reconfigurability, as they enable model-specific optimizations and higher performance per watt. However, creating and integrating FPGA-based accelerators for LLMs (particularly on edge devices) has proven challenging, mainly due to the limited hardware design flows for LLMs in existing FPGA platforms. To tackle this issue, in this paper we first propose a new design platform, named SECDA-LLM, that utilizes the SECDA methodology to streamline the process of designing, integrating, and deploying efficient FPGA-based LLM accelerators for the llama.cpp inference framework. We then demonstrate, through a case study, the potential benefits of SECDA-LLM by creating a new MatMul accelerator that supports block floating point quantized operations for LLMs. Our initial accelerator design, deployed on the PYNQ-Z1 board, reduces latency 1.7 seconds per token or ~2 seconds per word) by 11x over the dual-core Arm NEON-based CPU execution for the TinyLlama model.
Abstract:City scene generation has gained significant attention in autonomous driving, smart city development, and traffic simulation. It helps enhance infrastructure planning and monitoring solutions. Existing methods have employed a two-stage process involving city layout generation, typically using Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), or Transformers, followed by neural rendering. These techniques often exhibit limited diversity and noticeable artifacts in the rendered city scenes. The rendered scenes lack variety, resembling the training images, resulting in monotonous styles. Additionally, these methods lack planning capabilities, leading to less realistic generated scenes. In this paper, we introduce CityCraft, an innovative framework designed to enhance both the diversity and quality of urban scene generation. Our approach integrates three key stages: initially, a diffusion transformer (DiT) model is deployed to generate diverse and controllable 2D city layouts. Subsequently, a Large Language Model(LLM) is utilized to strategically make land-use plans within these layouts based on user prompts and language guidelines. Based on the generated layout and city plan, we utilize the asset retrieval module and Blender for precise asset placement and scene construction. Furthermore, we contribute two new datasets to the field: 1)CityCraft-OSM dataset including 2D semantic layouts of urban areas, corresponding satellite images, and detailed annotations. 2) CityCraft-Buildings dataset, featuring thousands of diverse, high-quality 3D building assets. CityCraft achieves state-of-the-art performance in generating realistic 3D cities.
Abstract:City layout generation has recently gained significant attention. The goal of this task is to automatically generate the layout of a city scene, including elements such as roads, buildings, vegetation, as well as other urban infrastructures. Previous methods using VAEs or GANs for 3D city layout generation offer limited diversity and constrained interactivity, only allowing users to selectively regenerate parts of the layout, which greatly limits customization. In this paper, we propose CityGen, a novel end-to-end framework for infinite, diverse and controllable 3D city layout generation.First, we propose an outpainting pipeline to extend the local layout to an infinite city layout. Then, we utilize a multi-scale diffusion model to generate diverse and controllable local semantic layout patches. The extensive experiments show that CityGen achieves state-of-the-art (SOTA) performance under FID and KID in generating an infinite and controllable 3D city layout. CityGen demonstrates promising applicability in fields like smart cities, urban planning, and digital simulation.
Abstract:Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications.
Abstract:Face recognition in complex scenes suffers severe challenges coming from perturbations such as pose deformation, ill illumination, partial occlusion. Some methods utilize depth estimation to obtain depth corresponding to RGB to improve the accuracy of face recognition. However, the depth generated by them suffer from image blur, which introduces noise in subsequent RGB-D face recognition tasks. In addition, existing RGB-D face recognition methods are unable to fully extract complementary features. In this paper, we propose a fine-grained facial depth generation network and an improved multimodal complementary feature learning network. Extensive experiments on the Lock3DFace dataset and the IIIT-D dataset show that the proposed FFDGNet and I MCFLNet can improve the accuracy of RGB-D face recognition while achieving the state-of-the-art performance.