Abstract:We study the Pandora's Box problem in an online learning setting with semi-bandit feedback. In each round, the learner sequentially pays to open up to $n$ boxes with unknown reward distributions, observes rewards upon opening, and decides when to stop. The utility of the learner is the maximum observed reward minus the cumulative cost of opened boxes, and the goal is to minimize regret defined as the gap between the cumulative expected utility and that of the optimal policy. We propose a new algorithm that achieves $\widetilde{O}(\sqrt{nT})$ regret after $T$ rounds, which improves the $\widetilde{O}(n\sqrt{T})$ bound of Agarwal et al. [2024] and matches the known lower bound up to logarithmic factors. To better capture real-life applications, we then extend our results to a natural but challenging contextual linear setting, where each box's expected reward is linear in some known but time-varying $d$-dimensional context and the noise distribution is fixed over time. We design an algorithm that learns both the linear function and the noise distributions, achieving $\widetilde{O}(nd\sqrt{T})$ regret. Finally, we show that our techniques also apply to the online Prophet Inequality problem, where the learner must decide immediately whether or not to accept a revealed reward. In both non-contextual and contextual settings, our approach achieves similar improvements and regret bounds.
Abstract:We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.