Abstract:Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.
Abstract:In the intelligent era, the interaction between humans and intelligent systems fundamentally involves collaboration with autonomous intelligent agents. Human-AI Collaboration (HAC) represents a novel type of human-machine relationship facilitated by autonomous intelligent machines equipped with AI technologies. In this paradigm, AI agents serve not only as auxiliary tools but also as active teammates, partnering with humans to accomplish tasks collaboratively. Human-centered AI (HCAI) emphasizes that humans play critical leadership roles in the collaboration. This human-led collaboration imparts new dimensions to the human-machine relationship, necessitating innovative research perspectives, paradigms, and agenda to address the unique challenges posed by HAC. This chapter delves into the essence of HAC from the human-centered perspective, outlining its core concepts and distinguishing features. It reviews the current research methodologies and research agenda within the HAC field from the HCAI perspective, highlighting advancements and ongoing studies. Furthermore, a framework for human-centered HAC (HCHAC) is proposed by integrating these reviews and analyses. A case study of HAC in the context of autonomous vehicles is provided, illustrating practical applications and the synergistic interactions between humans and AI agents. Finally, it identifies potential future research directions aimed at enhancing the effectiveness, reliability, and ethical integration of human-centered HAC systems in diverse domains.
Abstract:Current automatic deep learning (i.e., AutoDL) frameworks rely on training feedback from actual runs, which often hinder their ability to provide quick and clear performance predictions for selecting suitable DL systems. To address this issue, we propose EfficientDL, an innovative deep learning board designed for automatic performance prediction and component recommendation. EfficientDL can quickly and precisely recommend twenty-seven system components and predict the performance of DL models without requiring any training feedback. The magic of no training feedback comes from our proposed comprehensive, multi-dimensional, fine-grained system component dataset, which enables us to develop a static performance prediction model and comprehensive optimized component recommendation algorithm (i.e., {\alpha}\b{eta}-BO search), removing the dependency on actually running parameterized models during the traditional optimization search process. The simplicity and power of EfficientDL stem from its compatibility with most DL models. For example, EfficientDL operates seamlessly with mainstream models such as ResNet50, MobileNetV3, EfficientNet-B0, MaxViT-T, Swin-B, and DaViT-T, bringing competitive performance improvements. Besides, experimental results on the CIFAR-10 dataset reveal that EfficientDL outperforms existing AutoML tools in both accuracy and efficiency (approximately 20 times faster along with 1.31% Top-1 accuracy improvement than the cutting-edge methods). Source code, pretrained models, and datasets are available at https://github.com/OpenSELab/EfficientDL.
Abstract:Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.
Abstract:We experimentally investigate transmitting high-order quadrature amplitude modulation (QAM) signals with carrierless and intensity-only measurements with phase retrieval (PR) receiving techniques. The intensity errors during measurement, including noise and distortions, are found to be a limiting factor for the precise convergence of the PR algorithm. To improve the PR reconstruction accuracy, we propose a distortion-aware PR scheme comprising both training and reconstruction stages. By estimating and emulating the distortion caused by various channel impairments, the proposed scheme enables enhanced agreement between the estimated and measured amplitudes throughout the PR iteration, thus resulting in improved reconstruction performance to support high-order QAM transmission. With the aid of proposed techniques, we experimentally demonstrate 50-GBaud 16QAM and 32QAM signals transmitting through a standard single-mode optical fiber (SSMF) span of 40 and 80 km, and achieve bit error rates (BERs) below the 6.25% hard decision (HD)-forward error correction (FEC) and 25% soft decision (SD)-FEC thresholds for the two modulation formats, respectively. By tuning the pilot symbol ratio and applying concatenated coding, we also demonstrate that a post-FEC data rate of up to 140 Gb/s can be achieved for both distances at an optimal pilot symbol ratio of 20%.
Abstract:The rapid advancements in artificial intelligence (AI) have led to a growing trend of human-AI teaming (HAT) in various fields. As machines continue to evolve from mere automation to a state of autonomy, they are increasingly exhibiting unexpected behaviors and human-like cognitive/intelligent capabilities, including situation awareness (SA). This shift has the potential to enhance the performance of mixed human-AI teams over all-human teams, underscoring the need for a better understanding of the dynamic SA interactions between humans and machines. To this end, we provide a review of leading SA theoretical models and a new framework for SA in the HAT context based on the key features and processes of HAT. The Agent Teaming Situation Awareness (ATSA) framework unifies human and AI behavior, and involves bidirectional, and dynamic interaction. The framework is based on the individual and team SA models and elaborates on the cognitive mechanisms for modeling HAT. Similar perceptual cycles are adopted for the individual (including both human and AI) and the whole team, which is tailored to the unique requirements of the HAT context. ATSA emphasizes cohesive and effective HAT through structures and components, including teaming understanding, teaming control, and the world, as well as adhesive transactive part. We further propose several future research directions to expand on the distinctive contributions of ATSA and address the specific and pressing next steps.
Abstract:To improve the accuracy of color image completion with missing entries, we present a recovery method based on generalized higher-order scalars. We extend the traditional second-order matrix model to a more comprehensive higher-order matrix equivalent, called the "t-matrix" model, which incorporates a pixel neighborhood expansion strategy to characterize the local pixel constraints. This "t-matrix" model is then used to extend some commonly used matrix and tensor completion algorithms to their higher-order versions. We perform extensive experiments on various algorithms using simulated data and algorithms on simulated data and publicly available images and compare their performance. The results show that our generalized matrix completion model and the corresponding algorithm compare favorably with their lower-order tensor and conventional matrix counterparts.
Abstract:While various deep learning methods have been proposed for low-dose computed tomography (CT) denoising, most of them leverage the normal-dose CT images as the ground-truth to supervise the denoising process. These methods typically ignore the inherent correlation within a single CT image, especially the anatomical semantics of human tissues, and lack the interpretability on the denoising process. In this paper, we propose a novel Anatomy-aware Supervised CONtrastive learning framework, termed ASCON, which can explore the anatomical semantics for low-dose CT denoising while providing anatomical interpretability. The proposed ASCON consists of two novel designs: an efficient self-attention-based U-Net (ESAU-Net) and a multi-scale anatomical contrastive network (MAC-Net). First, to better capture global-local interactions and adapt to the high-resolution input, an efficient ESAU-Net is introduced by using a channel-wise self-attention mechanism. Second, MAC-Net incorporates a patch-wise non-contrastive module to capture inherent anatomical information and a pixel-wise contrastive module to maintain intrinsic anatomical consistency. Extensive experimental results on two public low-dose CT denoising datasets demonstrate superior performance of ASCON over state-of-the-art models. Remarkably, our ASCON provides anatomical interpretability for low-dose CT denoising for the first time. Source code is available at https://github.com/hao1635/ASCON.
Abstract:Low-dose computed tomography (CT) images suffer from noise and artifacts due to photon starvation and electronic noise. Recently, some works have attempted to use diffusion models to address the over-smoothness and training instability encountered by previous deep-learning-based denoising models. However, diffusion models suffer from long inference times due to the large number of sampling steps involved. Very recently, cold diffusion model generalizes classical diffusion models and has greater flexibility. Inspired by the cold diffusion, this paper presents a novel COntextual eRror-modulated gEneralized Diffusion model for low-dose CT (LDCT) denoising, termed CoreDiff. First, CoreDiff utilizes LDCT images to displace the random Gaussian noise and employs a novel mean-preserving degradation operator to mimic the physical process of CT degradation, significantly reducing sampling steps thanks to the informative LDCT images as the starting point of the sampling process. Second, to alleviate the error accumulation problem caused by the imperfect restoration operator in the sampling process, we propose a novel ContextuaL Error-modulAted Restoration Network (CLEAR-Net), which can leverage contextual information to constrain the sampling process from structural distortion and modulate time step embedding features for better alignment with the input at the next time step. Third, to rapidly generalize to a new, unseen dose level with as few resources as possible, we devise a one-shot learning framework to make CoreDiff generalize faster and better using only a single LDCT image (un)paired with NDCT. Extensive experimental results on two datasets demonstrate that our CoreDiff outperforms competing methods in denoising and generalization performance, with a clinically acceptable inference time.
Abstract:Document-level relation extraction with graph neural networks faces a fundamental graph construction gap between training and inference - the golden graph structure only available during training, which causes that most methods adopt heuristic or syntactic rules to construct a prior graph as a pseudo proxy. In this paper, we propose $\textbf{ConstGCN}$, a novel graph convolutional network which performs knowledge-based information propagation between entities along with all specific relation spaces without any prior graph construction. Specifically, it updates the entity representation by aggregating information from all other entities along with each relation space, thus modeling the relation-aware spatial information. To control the information flow passing through the indeterminate relation spaces, we propose to constrain the propagation using transmitting scores learned from the Noise Contrastive Estimation between fact triples. Experimental results show that our method outperforms the previous state-of-the-art (SOTA) approaches on the DocRE dataset.