Abstract:In the intelligent era, the interaction between humans and intelligent systems fundamentally involves collaboration with autonomous intelligent agents. Human-AI Collaboration (HAC) represents a novel type of human-machine relationship facilitated by autonomous intelligent machines equipped with AI technologies. In this paradigm, AI agents serve not only as auxiliary tools but also as active teammates, partnering with humans to accomplish tasks collaboratively. Human-centered AI (HCAI) emphasizes that humans play critical leadership roles in the collaboration. This human-led collaboration imparts new dimensions to the human-machine relationship, necessitating innovative research perspectives, paradigms, and agenda to address the unique challenges posed by HAC. This chapter delves into the essence of HAC from the human-centered perspective, outlining its core concepts and distinguishing features. It reviews the current research methodologies and research agenda within the HAC field from the HCAI perspective, highlighting advancements and ongoing studies. Furthermore, a framework for human-centered HAC (HCHAC) is proposed by integrating these reviews and analyses. A case study of HAC in the context of autonomous vehicles is provided, illustrating practical applications and the synergistic interactions between humans and AI agents. Finally, it identifies potential future research directions aimed at enhancing the effectiveness, reliability, and ethical integration of human-centered HAC systems in diverse domains.
Abstract:The rapid advancements in artificial intelligence (AI) have led to a growing trend of human-AI teaming (HAT) in various fields. As machines continue to evolve from mere automation to a state of autonomy, they are increasingly exhibiting unexpected behaviors and human-like cognitive/intelligent capabilities, including situation awareness (SA). This shift has the potential to enhance the performance of mixed human-AI teams over all-human teams, underscoring the need for a better understanding of the dynamic SA interactions between humans and machines. To this end, we provide a review of leading SA theoretical models and a new framework for SA in the HAT context based on the key features and processes of HAT. The Agent Teaming Situation Awareness (ATSA) framework unifies human and AI behavior, and involves bidirectional, and dynamic interaction. The framework is based on the individual and team SA models and elaborates on the cognitive mechanisms for modeling HAT. Similar perceptual cycles are adopted for the individual (including both human and AI) and the whole team, which is tailored to the unique requirements of the HAT context. ATSA emphasizes cohesive and effective HAT through structures and components, including teaming understanding, teaming control, and the world, as well as adhesive transactive part. We further propose several future research directions to expand on the distinctive contributions of ATSA and address the specific and pressing next steps.