Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
The Value-Improvement Path: Towards Better Representations for Reinforcement Learning

Jun 03, 2020
Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, David Silver


  Access Paper or Ask Questions

General non-linear Bellman equations

Jul 08, 2019
Hado van Hasselt, John Quan, Matteo Hessel, Zhongwen Xu, Diana Borsa, Andre Barreto


  Access Paper or Ask Questions

Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement

Jan 30, 2019
André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz, Augustin Žídek, Rémi Munos

* Published at ICML 2018 

  Access Paper or Ask Questions

Universal Successor Features Approximators

Dec 18, 2018
Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt, David Silver, Tom Schaul


  Access Paper or Ask Questions

Unicorn: Continual Learning with a Universal, Off-policy Agent

Jul 03, 2018
Daniel J. Mankowitz, Augustin Žídek, André Barreto, Dan Horgan, Matteo Hessel, John Quan, Junhyuk Oh, Hado van Hasselt, David Silver, Tom Schaul


  Access Paper or Ask Questions

Observe and Look Further: Achieving Consistent Performance on Atari

May 29, 2018
Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Večerík, Matteo Hessel, Rémi Munos, Olivier Pietquin


  Access Paper or Ask Questions

Distributed Prioritized Experience Replay

Mar 02, 2018
Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, David Silver

* Accepted to International Conference on Learning Representations 2018 

  Access Paper or Ask Questions

Deep Q-learning from Demonstrations

Nov 22, 2017
Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys

* Published at AAAI 2018. Previously on arxiv as "Learning from Demonstrations for Real World Reinforcement Learning" 

  Access Paper or Ask Questions

StarCraft II: A New Challenge for Reinforcement Learning

Aug 16, 2017
Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, Rodney Tsing

* Collaboration between DeepMind & Blizzard. 20 pages, 9 figures, 2 tables 

  Access Paper or Ask Questions

Distral: Robust Multitask Reinforcement Learning

Jul 13, 2017
Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu


  Access Paper or Ask Questions

Overcoming catastrophic forgetting in neural networks

Jan 25, 2017
James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell


  Access Paper or Ask Questions

Prioritized Experience Replay

Feb 25, 2016
Tom Schaul, John Quan, Ioannis Antonoglou, David Silver

* Published at ICLR 2016 

  Access Paper or Ask Questions