Abstract:Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.
Abstract:The massive growth of image-text data through web crawling inherently presents the challenge of variability in data quality. This paper introduces a novel algorithm, rooted in human knowledge, to compress this vast corpus of web-crawled image-text datasets to a compact and high-quality form. Our method unfolds in three major steps. First, we collect an image-text dataset, wherein each image is associated with multiple captions sourced from diverse origins. Then, to systemically capture human preferences regarding the best caption paired with each image, we establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Lastly, we train a reward model on the annotated dataset to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter misaligned/low-quality image-text pairs. Extensive experiments demonstrate that we are able to secure (or even improve) model performance by compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to 15.5M (e.g., ~9x smaller), our BLIP-B/16 models still consistently show superior performance compared with the full-size-dataset counterpart on image-text retrieval (Flickr30K, COCO) by ~2.5% in Recall@1, and on image-captioning (Nocaps, COCO) by ~10.0% in CIDEr and ~2.7% in SPICE.
Abstract:This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement of D-iGPT is its compelling performance on the ImageNet-1K dataset -- by training on publicly available datasets, D-iGPT achieves 89.5\% top-1 accuracy with a vanilla ViT-Large model. This model also shows strong generalization on the downstream task and robustness on out-of-distribution samples. Code is avaiable at \href{https://github.com/OliverRensu/D-iGPT}{https://github.com/OliverRensu/D-iGPT}.
Abstract:Non-photorealistic videos are in demand with the wave of the metaverse, but lack of sufficient research studies. This work aims to take a step forward to understand how humans perceive non-photorealistic videos with eye fixation (\ie, saliency detection), which is critical for enhancing media production, artistic design, and game user experience. To fill in the gap of missing a suitable dataset for this research line, we present NPF-200, the first large-scale multi-modal dataset of purely non-photorealistic videos with eye fixations. Our dataset has three characteristics: 1) it contains soundtracks that are essential according to vision and psychological studies; 2) it includes diverse semantic content and videos are of high-quality; 3) it has rich motions across and within videos. We conduct a series of analyses to gain deeper insights into this task and compare several state-of-the-art methods to explore the gap between natural images and non-photorealistic data. Additionally, as the human attention system tends to extract visual and audio features with different frequencies, we propose a universal frequency-aware multi-modal non-photorealistic saliency detection model called NPSNet, demonstrating the state-of-the-art performance of our task. The results uncover strengths and weaknesses of multi-modal network design and multi-domain training, opening up promising directions for future works. {Our dataset and code can be found at \url{https://github.com/Yangziyu/NPF200}}.
Abstract:Vision Transformer has demonstrated impressive success across various vision tasks. However, its heavy computation cost, which grows quadratically with respect to the token sequence length, largely limits its power in handling large feature maps. To alleviate the computation cost, previous works rely on either fine-grained self-attentions restricted to local small regions, or global self-attentions but to shorten the sequence length resulting in coarse granularity. In this paper, we propose a novel model, termed as Self-guided Transformer~(SG-Former), towards effective global self-attention with adaptive fine granularity. At the heart of our approach is to utilize a significance map, which is estimated through hybrid-scale self-attention and evolves itself during training, to reallocate tokens based on the significance of each region. Intuitively, we assign more tokens to the salient regions for achieving fine-grained attention, while allocating fewer tokens to the minor regions in exchange for efficiency and global receptive fields. The proposed SG-Former achieves performance superior to state of the art: our base size model achieves \textbf{84.7\%} Top-1 accuracy on ImageNet-1K, \textbf{51.2mAP} bbAP on CoCo, \textbf{52.7mIoU} on ADE20K surpassing the Swin Transformer by \textbf{+1.3\% / +2.7 mAP/ +3 mIoU}, with lower computation costs and fewer parameters. The code is available at \href{https://github.com/OliverRensu/SG-Former}{https://github.com/OliverRensu/SG-Former}
Abstract:Deep supervision, which involves extra supervisions to the intermediate features of a neural network, was widely used in image classification in the early deep learning era since it significantly reduces the training difficulty and eases the optimization like avoiding gradient vanish over the vanilla training. Nevertheless, with the emergence of normalization techniques and residual connection, deep supervision in image classification was gradually phased out. In this paper, we revisit deep supervision for masked image modeling (MIM) that pre-trains a Vision Transformer (ViT) via a mask-and-predict scheme. Experimentally, we find that deep supervision drives the shallower layers to learn more meaningful representations, accelerates model convergence, and expands attention diversities. Our approach, called DeepMIM, significantly boosts the representation capability of each layer. In addition, DeepMIM is compatible with many MIM models across a range of reconstruction targets. For instance, using ViT-B, DeepMIM on MAE achieves 84.2 top-1 accuracy on ImageNet, outperforming MAE by +0.6. By combining DeepMIM with a stronger tokenizer CLIP, our model achieves state-of-the-art performance on various downstream tasks, including image classification (85.6 top-1 accuracy on ImageNet-1K, outperforming MAE-CLIP by +0.8), object detection (52.8 APbox on COCO) and semantic segmentation (53.1 mIoU on ADE20K). Code and models are available at https://github.com/OliverRensu/DeepMIM.
Abstract:Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
Abstract:Data lies at the core of modern deep learning. The impressive performance of supervised learning is built upon a base of massive accurately labeled data. However, in some real-world applications, accurate labeling might not be viable; instead, multiple noisy labels (instead of one accurate label) are provided by several annotators for each data sample. Learning a classifier on such a noisy training dataset is a challenging task. Previous approaches usually assume that all data samples share the same set of parameters related to annotator errors, while we demonstrate that label error learning should be both annotator and data sample dependent. Motivated by this observation, we propose a novel learning algorithm. The proposed method displays superiority compared with several state-of-the-art baseline methods on MNIST, CIFAR-100, and ImageNet-100. Our code is available at: https://github.com/zhengqigao/Learning-from-Multiple-Annotator-Noisy-Labels.
Abstract:One key challenge of exemplar-guided image generation lies in establishing fine-grained correspondences between input and guided images. Prior approaches, despite the promising results, have relied on either estimating dense attention to compute per-point matching, which is limited to only coarse scales due to the quadratic memory cost, or fixing the number of correspondences to achieve linear complexity, which lacks flexibility. In this paper, we propose a dynamic sparse attention based Transformer model, termed Dynamic Sparse Transformer (DynaST), to achieve fine-level matching with favorable efficiency. The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on. Specifically, DynaST leverages the multi-layer nature of Transformer structure, and performs the dynamic attention scheme in a cascaded manner to refine matching results and synthesize visually-pleasing outputs. In addition, we introduce a unified training objective for DynaST, making it a versatile reference-based image translation framework for both supervised and unsupervised scenarios. Extensive experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details, outperforming the state of the art while reducing the computational cost significantly. Our code is available at https://github.com/Huage001/DynaST
Abstract:Data mixing (e.g., Mixup, Cutmix, ResizeMix) is an essential component for advancing recognition models. In this paper, we focus on studying its effectiveness in the self-supervised setting. By noticing the mixed images that share the same source images are intrinsically related to each other, we hereby propose SDMP, short for $\textbf{S}$imple $\textbf{D}$ata $\textbf{M}$ixing $\textbf{P}$rior, to capture this straightforward yet essential prior, and position such mixed images as additional $\textbf{positive pairs}$ to facilitate self-supervised representation learning. Our experiments verify that the proposed SDMP enables data mixing to help a set of self-supervised learning frameworks (e.g., MoCo) achieve better accuracy and out-of-distribution robustness. More notably, our SDMP is the first method that successfully leverages data mixing to improve (rather than hurt) the performance of Vision Transformers in the self-supervised setting. Code is publicly available at https://github.com/OliverRensu/SDMP