Abstract:This paper identifies significant redundancy in the query-key interactions within self-attention mechanisms of diffusion transformer models, particularly during the early stages of denoising diffusion steps. In response to this observation, we present a novel diffusion transformer framework incorporating an additional set of mediator tokens to engage with queries and keys separately. By modulating the number of mediator tokens during the denoising generation phases, our model initiates the denoising process with a precise, non-ambiguous stage and gradually transitions to a phase enriched with detail. Concurrently, integrating mediator tokens simplifies the attention module's complexity to a linear scale, enhancing the efficiency of global attention processes. Additionally, we propose a time-step dynamic mediator token adjustment mechanism that further decreases the required computational FLOPs for generation, simultaneously facilitating the generation of high-quality images within the constraints of varied inference budgets. Extensive experiments demonstrate that the proposed method can improve the generated image quality while also reducing the inference cost of diffusion transformers. When integrated with the recent work SiT, our method achieves a state-of-the-art FID score of 2.01. The source code is available at https://github.com/LeapLabTHU/Attention-Mediators.
Abstract:Generic event boundary detection (GEBD), inspired by human visual cognitive behaviors of consistently segmenting videos into meaningful temporal chunks, finds utility in various applications such as video editing and. In this paper, we demonstrate that SOTA GEBD models often prioritize final performance over model complexity, resulting in low inference speed and hindering efficient deployment in real-world scenarios. We contribute to addressing this challenge by experimentally reexamining the architecture of GEBD models and uncovering several surprising findings. Firstly, we reveal that a concise GEBD baseline model already achieves promising performance without any sophisticated design. Secondly, we find that the widely applied image-domain backbones in GEBD models can contain plenty of architecture redundancy, motivating us to gradually ``modernize'' each component to enhance efficiency. Thirdly, we show that the GEBD models using image-domain backbones conducting the spatiotemporal learning in a spatial-then-temporal greedy manner can suffer from a distraction issue, which might be the inefficient villain for GEBD. Using a video-domain backbone to jointly conduct spatiotemporal modeling is an effective solution for this issue. The outcome of our exploration is a family of GEBD models, named EfficientGEBD, significantly outperforms the previous SOTA methods by up to 1.7\% performance gain and 280\% speedup under the same backbone. Our research prompts the community to design modern GEBD methods with the consideration of model complexity, particularly in resource-aware applications. The code is available at \url{https://github.com/Ziwei-Zheng/EfficientGEBD}.
Abstract:Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.
Abstract:Recent proposed neural network-based Temporal Action Detection (TAD) models are inherently limited to extracting the discriminative representations and modeling action instances with various lengths from complex scenes by shared-weights detection heads. Inspired by the successes in dynamic neural networks, in this paper, we build a novel dynamic feature aggregation (DFA) module that can simultaneously adapt kernel weights and receptive fields at different timestamps. Based on DFA, the proposed dynamic encoder layer aggregates the temporal features within the action time ranges and guarantees the discriminability of the extracted representations. Moreover, using DFA helps to develop a Dynamic TAD head (DyHead), which adaptively aggregates the multi-scale features with adjusted parameters and learned receptive fields better to detect the action instances with diverse ranges from videos. With the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to https://github.com/yangle15/DyFADet-pytorch.
Abstract:The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.
Abstract:Echocardiography is the only technique capable of real-time imaging of the heart and is vital for diagnosing the majority of cardiac diseases. However, there is a severe shortage of experienced cardiac sonographers, due to the heart's complex structure and significant operational challenges. To mitigate this situation, we present a Cardiac Copilot system capable of providing real-time probe movement guidance to assist less experienced sonographers in conducting freehand echocardiography. This system can enable non-experts, especially in primary departments and medically underserved areas, to perform cardiac ultrasound examinations, potentially improving global healthcare delivery. The core innovation lies in proposing a data-driven world model, named Cardiac Dreamer, for representing cardiac spatial structures. This world model can provide structure features of any cardiac planes around the current probe position in the latent space, serving as an precise navigation map for autonomous plane localization. We train our model with real-world ultrasound data and corresponding probe motion from 110 routine clinical scans with 151K sample pairs by three certified sonographers. Evaluations on three standard planes with 37K sample pairs demonstrate that the world model can reduce navigation errors by up to 33\% and exhibit more stable performance.
Abstract:The field of image synthesis is currently flourishing due to the advancements in diffusion models. While diffusion models have been successful, their computational intensity has prompted the pursuit of more efficient alternatives. As a representative work, non-autoregressive Transformers (NATs) have been recognized for their rapid generation. However, a major drawback of these models is their inferior performance compared to diffusion models. In this paper, we aim to re-evaluate the full potential of NATs by revisiting the design of their training and inference strategies. Specifically, we identify the complexities in properly configuring these strategies and indicate the possible sub-optimality in existing heuristic-driven designs. Recognizing this, we propose to go beyond existing methods by directly solving the optimal strategies in an automatic framework. The resulting method, named AutoNAT, advances the performance boundaries of NATs notably, and is able to perform comparably with the latest diffusion models at a significantly reduced inference cost. The effectiveness of AutoNAT is validated on four benchmark datasets, i.e., ImageNet-256 & 512, MS-COCO, and CC3M. Our code is available at https://github.com/LeapLabTHU/ImprovedNAT.
Abstract:Test-time adaptation (TTA) aims to enhance the performance of source-domain pretrained models when tested on unknown shifted target domains. Traditional TTA methods primarily adapt model weights based on target data streams, making model performance sensitive to the amount and order of target data. Recently, diffusion-driven TTA methods have demonstrated strong performance by using an unconditional diffusion model, which is also trained on the source domain to transform target data into synthetic data as a source domain projection. This allows the source model to make predictions without weight adaptation. In this paper, we argue that the domains of the source model and the synthetic data in diffusion-driven TTA methods are not aligned. To adapt the source model to the synthetic domain of the unconditional diffusion model, we introduce a Synthetic-Domain Alignment (SDA) framework to fine-tune the source model with synthetic data. Specifically, we first employ a conditional diffusion model to generate labeled samples, creating a synthetic dataset. Subsequently, we use the aforementioned unconditional diffusion model to add noise to and denoise each sample before fine-tuning. This process mitigates the potential domain gap between the conditional and unconditional models. Extensive experiments across various models and benchmarks demonstrate that SDA achieves superior domain alignment and consistently outperforms existing diffusion-driven TTA methods. Our code is available at https://github.com/SHI-Labs/Diffusion-Driven-Test-Time-Adaptation-via-Synthetic-Domain-Alignment.
Abstract:Mamba is an effective state space model with linear computation complexity. It has recently shown impressive efficiency in dealing with high-resolution inputs across various vision tasks. In this paper, we reveal that the powerful Mamba model shares surprising similarities with linear attention Transformer, which typically underperform conventional Transformer in practice. By exploring the similarities and disparities between the effective Mamba and subpar linear attention Transformer, we provide comprehensive analyses to demystify the key factors behind Mamba's success. Specifically, we reformulate the selective state space model and linear attention within a unified formulation, rephrasing Mamba as a variant of linear attention Transformer with six major distinctions: input gate, forget gate, shortcut, no attention normalization, single-head, and modified block design. For each design, we meticulously analyze its pros and cons, and empirically evaluate its impact on model performance in vision tasks. Interestingly, the results highlight the forget gate and block design as the core contributors to Mamba's success, while the other four designs are less crucial. Based on these findings, we propose a Mamba-Like Linear Attention (MLLA) model by incorporating the merits of these two key designs into linear attention. The resulting model outperforms various vision Mamba models in both image classification and high-resolution dense prediction tasks, while enjoying parallelizable computation and fast inference speed. Code is available at https://github.com/LeapLabTHU/MLLA.
Abstract:High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity. Current high-resolution LMMs address the quadratic complexity while still generating excessive visual tokens. However, the redundancy in visual tokens is the key problem as it leads to more substantial compute. To mitigate this issue, we propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM to replace Vision Transformer (ViT). ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens. To enhance the capabilities of ConvLLaVA, we propose two critical optimizations. Since the low-resolution pretrained ConvNeXt underperforms when directly applied on high resolution, we update it to bridge the gap. Moreover, since ConvNeXt's original compression ratio is inadequate for much higher resolution inputs, we train a successive stage to further compress the visual tokens, thereby reducing redundancy. These optimizations enable ConvLLaVA to support inputs of 1536x1536 resolution generating only 576 visual tokens, capable of handling images of arbitrary aspect ratios. Experimental results demonstrate that our method achieves competitive performance with state-of-the-art models on mainstream benchmarks. The ConvLLaVA model series are publicly available at https://github.com/alibaba/conv-llava.