



Abstract:As one of the most popular parameter-efficient fine-tuning (PEFT) methods, low-rank adaptation (LoRA) is commonly applied to fine-tune large language models (LLMs). However, updating the weights of LoRA blocks effectively and expeditiously is challenging due to the long calculation path in the original model. To address this, we propose ResLoRA, an improved framework of LoRA. By adding residual paths during training and using merging approaches to eliminate these extra paths during inference, our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA. The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method. To the best of our knowledge, ResLoRA is the first work that combines the residual path with LoRA. The code of our method is available at https://github.com/microsoft/LMOps/tree/main/reslora .
Abstract:Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer LLM with the same model size and training tokens in terms of both perplexity and end-task performance, while being significantly more cost-effective in terms of latency, memory, throughput, and energy consumption. More profoundly, the 1.58-bit LLM defines a new scaling law and recipe for training new generations of LLMs that are both high-performance and cost-effective. Furthermore, it enables a new computation paradigm and opens the door for designing specific hardware optimized for 1-bit LLMs.




Abstract:Large language models (LLMs) have emerged as a promising alternative to expensive human evaluations. However, the alignment and coverage of LLM-based evaluations are often limited by the scope and potential bias of the evaluation prompts and criteria. To address this challenge, we propose HD-Eval, a novel framework that iteratively aligns LLM-based evaluators with human preference via Hierarchical Criteria Decomposition. HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators by decomposing a given evaluation task into finer-grained criteria, aggregating them according to estimated human preferences, pruning insignificant criteria with attribution, and further decomposing significant criteria. By integrating these steps within an iterative alignment training process, we obtain a hierarchical decomposition of criteria that comprehensively captures aspects of natural language at multiple levels of granularity. Implemented as a white box, the human preference-guided aggregator is efficient to train and more explainable than relying solely on prompting, and its independence from model parameters makes it applicable to closed-source LLMs. Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators and providing deeper insights into the explanation of evaluation results and the task itself.
Abstract:We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.




Abstract:Diffusion models have demonstrated exceptional capability in generating high-quality images, videos, and audio. Due to their adaptiveness in iterative refinement, they provide a strong potential for achieving better non-autoregressive sequence generation. However, existing text diffusion models still fall short in their performance due to a challenge in handling the discreteness of language. This paper thoroughly analyzes text diffusion models and uncovers two significant limitations: degradation of self-conditioning during training and misalignment between training and sampling. Motivated by our findings, we propose a novel Text Diffusion model called TREC, which mitigates the degradation with Reinforced Conditioning and the misalignment by Time-Aware Variance Scaling. Our extensive experiments demonstrate the competitiveness of TREC against autoregressive, non-autoregressive, and diffusion baselines. Moreover, qualitative analysis shows its advanced ability to fully utilize the diffusion process in refining samples.




Abstract:To enhance the domain-specific capabilities of large language models, continued pre-training on a domain-specific corpus is a prevalent method. Recent work demonstrates that adapting models using reading comprehension data formatted by regex-based patterns can significantly improve performance on domain-specific tasks. However, regex-based patterns are incapable of parsing raw corpora using domain-specific knowledge. Furthermore, the question and answer pairs are extracted directly from the corpus in predefined formats offers limited context. To address this limitation, we improve reading comprehension via LLM and clustering. LLM focuses on leveraging domain knowledge within the corpus to refine comprehension stage, while clustering supplies relevant knowledge by extending the context to enrich reading stage. Additionally, our method incorporates parameter-efficient fine-tuning to improve the efficiency of domain adaptation. In comparison to AdaptLLM, our method achieves an improvement exceeding 5% in domain-specific tasks. Our code will available at https://github.com/microsoft/LMOps.




Abstract:Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student's learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.
Abstract:The increasing size of large language models has posed challenges for deployment and raised concerns about environmental impact due to high energy consumption. In this work, we introduce BitNet, a scalable and stable 1-bit Transformer architecture designed for large language models. Specifically, we introduce BitLinear as a drop-in replacement of the nn.Linear layer in order to train 1-bit weights from scratch. Experimental results on language modeling show that BitNet achieves competitive performance while substantially reducing memory footprint and energy consumption, compared to state-of-the-art 8-bit quantization methods and FP16 Transformer baselines. Furthermore, BitNet exhibits a scaling law akin to full-precision Transformers, suggesting its potential for effective scaling to even larger language models while maintaining efficiency and performance benefits.
Abstract:Recent advancements in text-to-image (T2I) and vision-language-to-image (VL2I) generation have made significant strides. However, the generation from generalized vision-language inputs, especially involving multiple images, remains under-explored. This paper presents Kosmos-G, a model that leverages the advanced perception capabilities of Multimodal Large Language Models (MLLMs) to tackle the aforementioned challenge. Our approach aligns the output space of MLLM with CLIP using the textual modality as an anchor and performs compositional instruction tuning on curated data. Kosmos-G demonstrates a unique capability of zero-shot multi-entity subject-driven generation. Notably, the score distillation instruction tuning requires no modifications to the image decoder. This allows for a seamless substitution of CLIP and effortless integration with a myriad of U-Net techniques ranging from fine-grained controls to personalized image decoder variants. We posit Kosmos-G as an initial attempt towards the goal of "image as a foreign language in image generation."
Abstract:Recent advancements in large language models (LLMs) on language modeling and emergent capabilities make them a promising reference-free evaluator of natural language generation quality, and a competent alternative to human evaluation. However, hindered by the closed-source or high computational demand to host and tune, there is a lack of practice to further calibrate an off-the-shelf LLM-based evaluator towards better human alignment. In this work, we propose AutoCalibrate, a multi-stage, gradient-free approach to automatically calibrate and align an LLM-based evaluator toward human preference. Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels. Then, an initial set of scoring criteria is drafted by the language model itself, leveraging in-context learning on different few-shot examples. To further calibrate this set of criteria, we select the best performers and re-draft them with self-refinement. Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration. Our comprehensive qualitative analysis conveys insightful intuitions and observations on the essence of effective scoring criteria.