Alert button
Picture for Ser-Nam Lim

Ser-Nam Lim

Alert button

Object Recognition as Next Token Prediction

Dec 04, 2023
Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, Ser-Nam Lim

We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at

* auto-regression for recognition 
Viaarxiv icon

CLAMP: Contrastive LAnguage Model Prompt-tuning

Dec 04, 2023
Piotr Teterwak, Ximeng Sun, Bryan A. Plummer, Kate Saenko, Ser-Nam Lim

Large language models (LLMs) have emerged as powerful general-purpose interfaces for many machine learning problems. Recent work has adapted LLMs to generative visual tasks like image captioning, visual question answering, and visual chat, using a relatively small amount of instruction-tuning data. In this paper, we explore whether modern LLMs can also be adapted to classifying an image into a set of categories. First, we evaluate multimodal LLMs that are tuned for generative tasks on zero-shot image classification and find that their performance is far below that of specialized models like CLIP. We then propose an approach for light fine-tuning of LLMs using the same contrastive image-caption matching objective as CLIP. Our results show that LLMs can, indeed, achieve good image classification performance when adapted this way. Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model, while also retaining the LLM's generative abilities. LLM initialization appears to particularly help classification in domains under-represented in the visual pre-training data.

Viaarxiv icon

Label Delay in Continual Learning

Dec 01, 2023
Botos Csaba, Wenxuan Zhang, Matthias Müller, Ser-Nam Lim, Mohamed Elhoseiny, Philip Torr, Adel Bibi

Online continual learning, the process of training models on streaming data, has gained increasing attention in recent years. However, a critical aspect often overlooked is the label delay, where new data may not be labeled due to slow and costly annotation processes. We introduce a new continual learning framework with explicit modeling of the label delay between data and label streams over time steps. In each step, the framework reveals both unlabeled data from the current time step $t$ and labels delayed with $d$ steps, from the time step $t-d$. In our extensive experiments amounting to 1060 GPU days, we show that merely augmenting the computational resources is insufficient to tackle this challenge. Our findings underline a notable performance decline when solely relying on labeled data when the label delay becomes significant. More surprisingly, when using state-of-the-art SSL and TTA techniques to utilize the newer, unlabeled data, they fail to surpass the performance of a na\"ive method that simply trains on the delayed supervised stream. To this end, we introduce a simple, efficient baseline that rehearses from the labeled memory samples that are most similar to the new unlabeled samples. This method bridges the accuracy gap caused by label delay without significantly increasing computational complexity. We show experimentally that our method is the least affected by the label delay factor and in some cases successfully recovers the accuracy of the non-delayed counterpart. We conduct various ablations and sensitivity experiments, demonstrating the effectiveness of our approach.

* 17 pages, 12 figures 
Viaarxiv icon

From Categories to Classifier: Name-Only Continual Learning by Exploring the Web

Nov 19, 2023
Ameya Prabhu, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip H. S. Torr, Adel Bibi

Continual Learning (CL) often relies on the availability of extensive annotated datasets, an assumption that is unrealistically time-consuming and costly in practice. We explore a novel paradigm termed name-only continual learning where time and cost constraints prohibit manual annotation. In this scenario, learners adapt to new category shifts using only category names without the luxury of annotated training data. Our proposed solution leverages the expansive and ever-evolving internet to query and download uncurated webly-supervised data for image classification. We investigate the reliability of our web data and find them comparable, and in some cases superior, to manually annotated datasets. Additionally, we show that by harnessing the web, we can create support sets that surpass state-of-the-art name-only classification that create support sets using generative models or image retrieval from LAION-5B, achieving up to 25% boost in accuracy. When applied across varied continual learning contexts, our method consistently exhibits a small performance gap in comparison to models trained on manually annotated datasets. We present EvoTrends, a class-incremental dataset made from the web to capture real-world trends, created in just minutes. Overall, this paper underscores the potential of using uncurated webly-supervised data to mitigate the challenges associated with manual data labeling in continual learning.

Viaarxiv icon

Riemannian Residual Neural Networks

Oct 16, 2023
Isay Katsman, Eric Ming Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim, Christopher De Sa

Recent methods in geometric deep learning have introduced various neural networks to operate over data that lie on Riemannian manifolds. Such networks are often necessary to learn well over graphs with a hierarchical structure or to learn over manifold-valued data encountered in the natural sciences. These networks are often inspired by and directly generalize standard Euclidean neural networks. However, extending Euclidean networks is difficult and has only been done for a select few manifolds. In this work, we examine the residual neural network (ResNet) and show how to extend this construction to general Riemannian manifolds in a geometrically principled manner. Originally introduced to help solve the vanishing gradient problem, ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks. We find that our Riemannian ResNets mirror these desirable properties: when compared to existing manifold neural networks designed to learn over hyperbolic space and the manifold of symmetric positive definite matrices, we outperform both kinds of networks in terms of relevant testing metrics and training dynamics.

* Published at NeurIPS 2023 
Viaarxiv icon

Stable Estimation of Survival Causal Effects

Oct 01, 2023
Khiem Pham, David A. Hirshberg, Phuong-Mai Huynh-Pham, Michele Santacatterina, Ser-Nam Lim, Ramin Zabih

We study the problem of estimating survival causal effects, where the aim is to characterize the impact of an intervention on survival times, i.e., how long it takes for an event to occur. Applications include determining if a drug reduces the time to ICU discharge or if an advertising campaign increases customer dwell time. Historically, the most popular estimates have been based on parametric or semiparametric (e.g. proportional hazards) models; however, these methods suffer from problematic levels of bias. Recently debiased machine learning approaches are becoming increasingly popular, especially in applications to large datasets. However, despite their appealing theoretical properties, these estimators tend to be unstable because the debiasing step involves the use of the inverses of small estimated probabilities -- small errors in the estimated probabilities can result in huge changes in their inverses and therefore the resulting estimator. This problem is exacerbated in survival settings where probabilities are a product of treatment assignment and censoring probabilities. We propose a covariate balancing approach to estimating these inverses directly, sidestepping this problem. The result is an estimator that is stable in practice and enjoys many of the same theoretical properties. In particular, under overlap and asymptotic equicontinuity conditions, our estimator is asymptotically normal with negligible bias and optimal variance. Our experiments on synthetic and semi-synthetic data demonstrate that our method has competitive bias and smaller variance than debiased machine learning approaches.

* 32 pages, 5 figures 
Viaarxiv icon

Language-free Compositional Action Generation via Decoupling Refinement

Jul 07, 2023
Xiao Liu, Guangyi Chen, Yansong Tang, Guangrun Wang, Ser-Nam Lim

Figure 1 for Language-free Compositional Action Generation via Decoupling Refinement
Figure 2 for Language-free Compositional Action Generation via Decoupling Refinement
Figure 3 for Language-free Compositional Action Generation via Decoupling Refinement
Figure 4 for Language-free Compositional Action Generation via Decoupling Refinement

Composing simple elements into complex concepts is crucial yet challenging, especially for 3D action generation. Existing methods largely rely on extensive neural language annotations to discern composable latent semantics, a process that is often costly and labor-intensive. In this study, we introduce a novel framework to generate compositional actions without reliance on language auxiliaries. Our approach consists of three main components: Action Coupling, Conditional Action Generation, and Decoupling Refinement. Action Coupling utilizes an energy model to extract the attention masks of each sub-action, subsequently integrating two actions using these attentions to generate pseudo-training examples. Then, we employ a conditional generative model, CVAE, to learn a latent space, facilitating the diverse generation. Finally, we propose Decoupling Refinement, which leverages a self-supervised pre-trained model MAE to ensure semantic consistency between the sub-actions and compositional actions. This refinement process involves rendering generated 3D actions into 2D space, decoupling these images into two sub-segments, using the MAE model to restore the complete image from sub-segments, and constraining the recovered images to match images rendered from raw sub-actions. Due to the lack of existing datasets containing both sub-actions and compositional actions, we created two new datasets, named HumanAct-C and UESTC-C, and present a corresponding evaluation metric. Both qualitative and quantitative assessments are conducted to show our efficacy.

* preprint 
Viaarxiv icon

Graph Inductive Biases in Transformers without Message Passing

May 27, 2023
Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr, Ser-Nam Lim

Figure 1 for Graph Inductive Biases in Transformers without Message Passing
Figure 2 for Graph Inductive Biases in Transformers without Message Passing
Figure 3 for Graph Inductive Biases in Transformers without Message Passing
Figure 4 for Graph Inductive Biases in Transformers without Message Passing

Transformers for graph data are increasingly widely studied and successful in numerous learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous works incorporate them using message-passing modules and/or positional encodings. However, Graph Transformers that use message-passing inherit known issues of message-passing, and differ significantly from Transformers used in other domains, thus making transfer of research advances more difficult. On the other hand, Graph Transformers without message-passing often perform poorly on smaller datasets, where inductive biases are more crucial. To bridge this gap, we propose the Graph Inductive bias Transformer (GRIT) -- a new Graph Transformer that incorporates graph inductive biases without using message passing. GRIT is based on several architectural changes that are each theoretically and empirically justified, including: learned relative positional encodings initialized with random walk probabilities, a flexible attention mechanism that updates node and node-pair representations, and injection of degree information in each layer. We prove that GRIT is expressive -- it can express shortest path distances and various graph propagation matrices. GRIT achieves state-of-the-art empirical performance across a variety of graph datasets, thus showing the power that Graph Transformers without message-passing can deliver.

* Published as a conference paper at ICML 2023; 17 pages 
Viaarxiv icon

Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?

May 16, 2023
Hasan Abed Al Kader Hammoud, Ameya Prabhu, Ser-Nam Lim, Philip H. S. Torr, Adel Bibi, Bernard Ghanem

Figure 1 for Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
Figure 2 for Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
Figure 3 for Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
Figure 4 for Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?

We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy, which measures the accuracy of the model on the immediate next few samples. However, we show that this metric is unreliable, as even vacuous blind classifiers, which do not use input images for prediction, can achieve unrealistically high online accuracy by exploiting spurious label correlations in the data stream. Our study reveals that existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information, suggesting that they unintentionally learn spurious label correlations. To address this issue, we propose a novel metric for measuring adaptation based on the accuracy on the near-future samples, where spurious correlations are removed. We benchmark existing OCL approaches using our proposed metric on large-scale datasets under various computational budgets and find that better generalization can be achieved by retaining and reusing past seen information. We believe that our proposed metric can aid in the development of truly adaptive OCL methods. We provide code to reproduce our results at

Viaarxiv icon

LASER: Neuro-Symbolic Learning of Semantic Video Representations

Apr 15, 2023
Jiani Huang, Ziyang Li, David Jacobs, Mayur Naik, Ser-Nam Lim

Figure 1 for LASER: Neuro-Symbolic Learning of Semantic Video Representations
Figure 2 for LASER: Neuro-Symbolic Learning of Semantic Video Representations
Figure 3 for LASER: Neuro-Symbolic Learning of Semantic Video Representations
Figure 4 for LASER: Neuro-Symbolic Learning of Semantic Video Representations

Modern AI applications involving video, such as video-text alignment, video search, and video captioning, benefit from a fine-grained understanding of video semantics. Existing approaches for video understanding are either data-hungry and need low-level annotation, or are based on general embeddings that are uninterpretable and can miss important details. We propose LASER, a neuro-symbolic approach that learns semantic video representations by leveraging logic specifications that can capture rich spatial and temporal properties in video data. In particular, we formulate the problem in terms of alignment between raw videos and specifications. The alignment process efficiently trains low-level perception models to extract a fine-grained video representation that conforms to the desired high-level specification. Our pipeline can be trained end-to-end and can incorporate contrastive and semantic loss functions derived from specifications. We evaluate our method on two datasets with rich spatial and temporal specifications: 20BN-Something-Something and MUGEN. We demonstrate that our method not only learns fine-grained video semantics but also outperforms existing baselines on downstream tasks such as video retrieval.

Viaarxiv icon