Abstract:The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world, though the vaccines have been developed and national vaccination coverage rate is steadily increasing. At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19. Thanks to the development of deep learning technology, some deep learning solutions for lung infection segmentation have been proposed. However, due to the scattered distribution, complex background interference and blurred boundaries, the accuracy and completeness of the existing models are still unsatisfactory. To this end, we propose a boundary guided semantic learning network (BSNet) in this paper. On the one hand, the dual-branch semantic enhancement module that combines the top-level semantic preservation and progressive semantic integration is designed to model the complementary relationship between different high-level features, thereby promoting the generation of more complete segmentation results. On the other hand, the mirror-symmetric boundary guidance module is proposed to accurately detect the boundaries of the lesion regions in a mirror-symmetric way. Experiments on the publicly available dataset demonstrate that our BSNet outperforms the existing state-of-the-art competitors and achieves a real-time inference speed of 44 FPS.
Abstract:Stereo superpixel segmentation aims at grouping the discretizing pixels into perceptual regions through left and right views more collaboratively and efficiently. Existing superpixel segmentation algorithms mostly utilize color and spatial features as input, which may impose strong constraints on spatial information while utilizing the disparity information in terms of stereo image pairs. To alleviate this issue, we propose a stereo superpixel segmentation method with a decoupling mechanism of spatial information in this work. To decouple stereo disparity information and spatial information, the spatial information is temporarily removed before fusing the features of stereo image pairs, and a decoupled stereo fusion module (DSFM) is proposed to handle the stereo features alignment as well as occlusion problems. Moreover, since the spatial information is vital to superpixel segmentation, we further design a dynamic spatiality embedding module (DSEM) to re-add spatial information, and the weights of spatial information will be adaptively adjusted through the dynamic fusion (DF) mechanism in DSEM for achieving a finer segmentation. Comprehensive experimental results demonstrate that our method can achieve the state-of-the-art performance on the KITTI2015 and Cityscapes datasets, and also verify the efficiency when applied in salient object detection on NJU2K dataset. The source code will be available publicly after paper is accepted.
Abstract:The spread of COVID-19 has brought a huge disaster to the world, and the automatic segmentation of infection regions can help doctors to make diagnosis quickly and reduce workload. However, there are several challenges for the accurate and complete segmentation, such as the scattered infection area distribution, complex background noises, and blurred segmentation boundaries. To this end, in this paper, we propose a novel network for automatic COVID-19 lung infection segmentation from CT images, named BCS-Net, which considers the boundary, context, and semantic attributes. The BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage that includes three progressively Boundary-Context-Semantic Reconstruction (BCSR) blocks. In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder by highlighting the important spatial and boundary locations and modeling the global context dependence. Besides, a semantic guidance (SG) unit generates the semantic guidance map to refine the decoder features by aggregating multi-scale high-level features at the intermediate resolution. Extensive experiments demonstrate that our proposed framework outperforms the existing competitors both qualitatively and quantitatively.
Abstract:The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract inter-image correspondence is crucial for the CoSOD task. In this paper, we propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM) to capture comprehensive inter-image corresponding relationship among different images from the global and local perspectives. Firstly, we treat different images as different time slices and use 3D convolution to integrate all intra features intuitively, which can more fully extract the global group semantics. Secondly, we design a pairwise correlation transformation (PCT) to explore similarity correspondence between pairwise images and combine the multiple local pairwise correspondences to generate the local inter-image relationship. Thirdly, the inter-image relationships of the GCM and LCM are integrated through a global-and-local correspondence aggregation (GLA) module to explore more comprehensive inter-image collaboration cues. Finally, the intra- and inter-features are adaptively integrated by an intra-and-inter weighting fusion (AEWF) module to learn co-saliency features and predict the co-saliency map. The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images).
Abstract:Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs. Despite some saliency models were proposed to solve the intrinsic problem of optical RSIs (such as complex background and scale-variant objects), the accuracy and completeness are still unsatisfactory. To this end, we propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs in this paper. The relational reasoning module that integrates the spatial and the channel dimensions is designed to infer the semantic relationship by utilizing high-level encoder features, thereby promoting the generation of more complete detection results. The parallel multi-scale attention module is proposed to effectively restore the detail information and address the scale variation of salient objects by using the low-level features refined by multi-scale attention. Extensive experiments on two datasets demonstrate that our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
Abstract:The popularity and promotion of depth maps have brought new vigor and vitality into salient object detection (SOD), and a mass of RGB-D SOD algorithms have been proposed, mainly concentrating on how to better integrate cross-modality features from RGB image and depth map. For the cross-modality interaction in feature encoder, existing methods either indiscriminately treat RGB and depth modalities, or only habitually utilize depth cues as auxiliary information of the RGB branch. Different from them, we reconsider the status of two modalities and propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD, which differentially models the dependence of two modalities according to the feature representations of different layers. To this end, two components are designed to implement the effective cross-modality interaction: 1) the RGB-induced Detail Enhancement (RDE) module leverages RGB modality to enhance the details of the depth features in low-level encoder stage. 2) the Depth-induced Semantic Enhancement (DSE) module transfers the object positioning and internal consistency of depth features to the RGB branch in high-level encoder stage. Furthermore, we also design a Dense Decoding Reconstruction (DDR) structure, which constructs a semantic block by combining multi-level encoder features to upgrade the skip connection in the feature decoding. Extensive experiments on five benchmark datasets demonstrate that our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively. Our code is publicly available at: https://rmcong.github.io/proj_CDINet.html.
Abstract:Depth map super-resolution is a task with high practical application requirements in the industry. Existing color-guided depth map super-resolution methods usually necessitate an extra branch to extract high-frequency detail information from RGB image to guide the low-resolution depth map reconstruction. However, because there are still some differences between the two modalities, direct information transmission in the feature dimension or edge map dimension cannot achieve satisfactory result, and may even trigger texture copying in areas where the structures of the RGB-D pair are inconsistent. Inspired by the multi-task learning, we propose a joint learning network of depth map super-resolution (DSR) and monocular depth estimation (MDE) without introducing additional supervision labels. For the interaction of two subnetworks, we adopt a differentiated guidance strategy and design two bridges correspondingly. One is the high-frequency attention bridge (HABdg) designed for the feature encoding process, which learns the high-frequency information of the MDE task to guide the DSR task. The other is the content guidance bridge (CGBdg) designed for the depth map reconstruction process, which provides the content guidance learned from DSR task for MDE task. The entire network architecture is highly portable and can provide a paradigm for associating the DSR and MDE tasks. Extensive experiments on benchmark datasets demonstrate that our method achieves competitive performance. Our code and models are available at https://rmcong.github.io/proj_BridgeNet.html.
Abstract:Underwater images suffer from color casts and low contrast due to wavelength- and distance-dependent attenuation and scattering. To solve these two degradation issues, we present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor. Concretely, we first propose a multi-color space encoder network, which enriches the diversity of feature representations by incorporating the characteristics of different color spaces into a unified structure. Coupled with an attention mechanism, the most discriminative features extracted from multiple color spaces are adaptively integrated and highlighted. Inspired by underwater imaging physical models, we design a medium transmission (indicating the percentage of the scene radiance reaching the camera)-guided decoder network to enhance the response of the network towards quality-degraded regions. As a result, our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding and the advantages of both physical model-based and learning-based methods. Extensive experiments demonstrate that our Ucolor achieves superior performance against state-of-the-art methods in terms of both visual quality and quantitative metrics.
Abstract:Depth maps obtained by commercial depth sensors are always in low-resolution, making it difficult to be used in various computer vision tasks. Thus, depth map super-resolution (SR) is a practical and valuable task, which upscales the depth map into high-resolution (HR) space. However, limited by the lack of real-world paired low-resolution (LR) and HR depth maps, most existing methods use downsampling to obtain paired training samples. To this end, we first construct a large-scale dataset named "RGB-D-D", which can greatly promote the study of depth map SR and even more depth-related real-world tasks. The "D-D" in our dataset represents the paired LR and HR depth maps captured from mobile phone and Lucid Helios respectively ranging from indoor scenes to challenging outdoor scenes. Besides, we provide a fast depth map super-resolution (FDSR) baseline, in which the high-frequency component adaptively decomposed from RGB image to guide the depth map SR. Extensive experiments on existing public datasets demonstrate the effectiveness and efficiency of our network compared with the state-of-the-art methods. Moreover, for the real-world LR depth maps, our algorithm can produce more accurate HR depth maps with clearer boundaries and to some extent correct the depth value errors.
Abstract:Superpixel segmentation aims at dividing the input image into some representative regions containing pixels with similar and consistent intrinsic properties, without any prior knowledge about the shape and size of each superpixel. In this paper, to alleviate the limitation of superpixel segmentation applied in practical industrial tasks that detailed boundaries are difficult to be kept, we regard each representative region with independent semantic information as a subspace, and correspondingly formulate superpixel segmentation as a subspace clustering problem to preserve more detailed content boundaries. We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels within a superpixel, which may lead to boundary confusion and segmentation error when the correlation is ignored. Consequently, we devise a spatial regularization and propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel and generate the content-aware superpixels with more detailed boundaries. Finally, the proposed model is solved by an efficient alternating direction method of multipliers (ADMM) solver. Experiments on different standard datasets demonstrate that the proposed method achieves superior performance both quantitatively and qualitatively compared with some state-of-the-art methods.