Shawn
Abstract:Irregular multivariate time series (IMTS) are characterized by irregular time intervals within variables and unaligned observations across variables, posing challenges in learning temporal and variable dependencies. Many existing IMTS models either require padded samples to learn separately from temporal and variable dimensions, or represent original samples via bipartite graphs or sets. However, the former approaches often need to handle extra padding values affecting efficiency and disrupting original sampling patterns, while the latter ones have limitations in capturing dependencies among unaligned observations. To represent and learn both dependencies from original observations in a unified form, we propose HyperIMTS, a Hypergraph neural network for Irregular Multivariate Time Series forecasting. Observed values are converted as nodes in the hypergraph, interconnected by temporal and variable hyperedges to enable message passing among all observations. Through irregularity-aware message passing, HyperIMTS captures variable dependencies in a time-adaptive way to achieve accurate forecasting. Experiments demonstrate HyperIMTS's competitive performance among state-of-the-art models in IMTS forecasting with low computational cost.
Abstract:Lifelong learning is essential for intelligent agents operating in dynamic environments. Current large language model (LLM)-based agents, however, remain stateless and unable to accumulate or transfer knowledge over time. Existing benchmarks treat agents as static systems and fail to evaluate lifelong learning capabilities. We present LifelongAgentBench, the first unified benchmark designed to systematically assess the lifelong learning ability of LLM agents. It provides skill-grounded, interdependent tasks across three interactive environments, Database, Operating System, and Knowledge Graph, with automatic label verification, reproducibility, and modular extensibility. Extensive experiments reveal that conventional experience replay has limited effectiveness for LLM agents due to irrelevant information and context length constraints. We further introduce a group self-consistency mechanism that significantly improves lifelong learning performance. We hope LifelongAgentBench will advance the development of adaptive, memory-capable LLM agents.
Abstract:Shapelets are discriminative subsequences (or shapes) with high interpretability in time series classification. Due to the time-intensive nature of shapelet discovery, existing shapelet-based methods mainly focus on selecting discriminative shapes while discarding others to achieve candidate subsequence sparsification. However, this approach may exclude beneficial shapes and overlook the varying contributions of shapelets to classification performance. To this end, we propose a \textbf{Soft} sparse \textbf{Shape}s (\textbf{SoftShape}) model for efficient time series classification. Our approach mainly introduces soft shape sparsification and soft shape learning blocks. The former transforms shapes into soft representations based on classification contribution scores, merging lower-scored ones into a single shape to retain and differentiate all subsequence information. The latter facilitates intra- and inter-shape temporal pattern learning, improving model efficiency by using sparsified soft shapes as inputs. Specifically, we employ a learnable router to activate a subset of class-specific expert networks for intra-shape pattern learning. Meanwhile, a shared expert network learns inter-shape patterns by converting sparsified shapes into sequences. Extensive experiments show that SoftShape outperforms state-of-the-art methods and produces interpretable results.
Abstract:We present Articulated Kinematics Distillation (AKD), a framework for generating high-fidelity character animations by merging the strengths of skeleton-based animation and modern generative models. AKD uses a skeleton-based representation for rigged 3D assets, drastically reducing the Degrees of Freedom (DoFs) by focusing on joint-level control, which allows for efficient, consistent motion synthesis. Through Score Distillation Sampling (SDS) with pre-trained video diffusion models, AKD distills complex, articulated motions while maintaining structural integrity, overcoming challenges faced by 4D neural deformation fields in preserving shape consistency. This approach is naturally compatible with physics-based simulation, ensuring physically plausible interactions. Experiments show that AKD achieves superior 3D consistency and motion quality compared with existing works on text-to-4D generation. Project page: https://research.nvidia.com/labs/dir/akd/
Abstract:Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
Abstract:We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
Abstract:In recent years, deep learning techniques have made significant strides in molecular generation for specific targets, driving advancements in drug discovery. However, existing molecular generation methods present significant limitations: those operating at the atomic level often lack synthetic feasibility, drug-likeness, and interpretability, while fragment-based approaches frequently overlook comprehensive factors that influence protein-molecule interactions. To address these challenges, we propose a novel fragment-based molecular generation framework tailored for specific proteins. Our method begins by constructing a protein subpocket and molecular arm concept-based neural network, which systematically integrates interaction force information and geometric complementarity to sample molecular arms for specific protein subpockets. Subsequently, we introduce a diffusion model to generate molecular backbones that connect these arms, ensuring structural integrity and chemical diversity. Our approach significantly improves synthetic feasibility and binding affinity, with a 4% increase in drug-likeness and a 6% improvement in synthetic feasibility. Furthermore, by integrating explicit interaction data through a concept-based model, our framework enhances interpretability, offering valuable insights into the molecular design process.
Abstract:Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: \textbf{neuron misidentification} due to simplistic parameter magnitude-based selection, and \textbf{cross-task neuron interference} during merging. To address these challenges, we propose \textbf{LED-Merging}, a three-stage framework that \textbf{L}ocates task-specific neurons via gradient-based attribution, dynamically \textbf{E}lects critical neurons through multi-model importance fusion, and \textbf{D}isjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging reduces harmful response rates(\emph{e.g.}, a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench) while preserving 95\% of utility performance(\emph{e.g.}, 52.39\% accuracy on GSM8K). LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs.
Abstract:Complex Query Answering (CQA) over incomplete Knowledge Graphs (KGs) is a challenging task. Recently, a line of message-passing-based research has been proposed to solve CQA. However, they perform unsatisfactorily on negative queries and fail to address the noisy messages between variable nodes in the query graph. Moreover, they offer little interpretability and require complex query data and resource-intensive training. In this paper, we propose a Neural-Symbolic Message Passing (NSMP) framework based on pre-trained neural link predictors. By introducing symbolic reasoning and fuzzy logic, NSMP can generalize to arbitrary existential first order logic queries without requiring training while providing interpretable answers. Furthermore, we introduce a dynamic pruning strategy to filter out noisy messages between variable nodes. Experimental results show that NSMP achieves a strong performance. Additionally, through complexity analysis and empirical verification, we demonstrate the superiority of NSMP in inference time over the current state-of-the-art neural-symbolic method. Compared to this approach, NSMP demonstrates faster inference times across all query types on benchmark datasets, with speedup ranging from 2$\times$ to over 150$\times$.
Abstract:This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions (e.g., keyboard and mouse operations). Unlike prevailing agent frameworks that depend on heavily wrapped commercial models (e.g., GPT-4o) with expert-crafted prompts and workflows, UI-TARS is an end-to-end model that outperforms these sophisticated frameworks. Experiments demonstrate its superior performance: UI-TARS achieves SOTA performance in 10+ GUI agent benchmarks evaluating perception, grounding, and GUI task execution. Notably, in the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively). In AndroidWorld, UI-TARS achieves 46.6, surpassing GPT-4o (34.5). UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for context-aware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines. Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention. We also analyze the evolution path of GUI agents to guide the further development of this domain.