Beihang University
Abstract:This paper proposes BPNet, a novel end-to-end deep learning framework to learn B\'ezier primitive segmentation on 3D point clouds. The existing works treat different primitive types separately, thus limiting them to finite shape categories. To address this issue, we seek a generalized primitive segmentation on point clouds. Taking inspiration from B\'ezier decomposition on NURBS models, we transfer it to guide point cloud segmentation casting off primitive types. A joint optimization framework is proposed to learn B\'ezier primitive segmentation and geometric fitting simultaneously on a cascaded architecture. Specifically, we introduce a soft voting regularizer to improve primitive segmentation and propose an auto-weight embedding module to cluster point features, making the network more robust and generic. We also introduce a reconstruction module where we successfully process multiple CAD models with different primitives simultaneously. We conducted extensive experiments on the synthetic ABC dataset and real-scan datasets to validate and compare our approach with different baseline methods. Experiments show superior performance over previous work in terms of segmentation, with a substantially faster inference speed.




Abstract:Multi-Modal Relation Extraction (MMRE) aims at identifying the relation between two entities in texts that contain visual clues. Rich visual content is valuable for the MMRE task, but existing works cannot well model finer associations among different modalities, failing to capture the truly helpful visual information and thus limiting relation extraction performance. In this paper, we propose a novel MMRE framework to better capture the deeper correlations of text, entity pair, and image/objects, so as to mine more helpful information for the task, termed as DGF-PT. We first propose a prompt-based autoregressive encoder, which builds the associations of intra-modal and inter-modal features related to the task, respectively by entity-oriented and object-oriented prefixes. To better integrate helpful visual information, we design a dual-gated fusion module to distinguish the importance of image/objects and further enrich text representations. In addition, a generative decoder is introduced with entity type restriction on relations, better filtering out candidates. Extensive experiments conducted on the benchmark dataset show that our approach achieves excellent performance compared to strong competitors, even in the few-shot situation.
Abstract:The multi-modal entity alignment (MMEA) aims to find all equivalent entity pairs between multi-modal knowledge graphs (MMKGs). Rich attributes and neighboring entities are valuable for the alignment task, but existing works ignore contextual gap problems that the aligned entities have different numbers of attributes on specific modality when learning entity representations. In this paper, we propose a novel attribute-consistent knowledge graph representation learning framework for MMEA (ACK-MMEA) to compensate the contextual gaps through incorporating consistent alignment knowledge. Attribute-consistent KGs (ACKGs) are first constructed via multi-modal attribute uniformization with merge and generate operators so that each entity has one and only one uniform feature in each modality. The ACKGs are then fed into a relation-aware graph neural network with random dropouts, to obtain aggregated relation representations and robust entity representations. In order to evaluate the ACK-MMEA facilitated for entity alignment, we specially design a joint alignment loss for both entity and attribute evaluation. Extensive experiments conducted on two benchmark datasets show that our approach achieves excellent performance compared to its competitors.
Abstract:Counterfactual fairness alleviates the discrimination between the model prediction toward an individual in the actual world (observational data) and that in counterfactual world (i.e., what if the individual belongs to other sensitive groups). The existing studies need to pre-define the structural causal model that captures the correlations among variables for counterfactual inference; however, the underlying causal model is usually unknown and difficult to be validated in real-world scenarios. Moreover, the misspecification of the causal model potentially leads to poor performance in model prediction and thus makes unfair decisions. In this research, we propose a novel minimax game-theoretic model for counterfactual fairness that can produce accurate results meanwhile achieve a counterfactually fair decision with the relaxation of strong assumptions of structural causal models. In addition, we also theoretically prove the error bound of the proposed minimax model. Empirical experiments on multiple real-world datasets illustrate our superior performance in both accuracy and fairness. Source code is available at \url{https://github.com/tridungduong16/counterfactual_fairness_game_theoretic}.
Abstract:Counterfactual explanation is a form of interpretable machine learning that generates perturbations on a sample to achieve the desired outcome. The generated samples can act as instructions to guide end users on how to observe the desired results by altering samples. Although state-of-the-art counterfactual explanation methods are proposed to use variational autoencoder (VAE) to achieve promising improvements, they suffer from two major limitations: 1) the counterfactuals generation is prohibitively slow, which prevents algorithms from being deployed in interactive environments; 2) the counterfactual explanation algorithms produce unstable results due to the randomness in the sampling procedure of variational autoencoder. In this work, to address the above limitations, we design a robust and efficient counterfactual explanation framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of continuous and categorical features. Numerical experiments demonstrate that our technique compares favorably to state-of-the-art methods. We release our source at https://github.com/tridungduong16/fairCE.git for reproducing the results.
Abstract:Graph neural networks (GNNs) have been proposed for medical image segmentation, by predicting anatomical structures represented by graphs of vertices and edges. One such type of graph is predefined with fixed size and connectivity to represent a reference of anatomical regions of interest, thus known as templates. This work explores the potentials in these GNNs with common topology for establishing spatial correspondence, implicitly maintained during segmenting two or more images. With an example application of registering local vertebral sub-regions found in CT images, our experimental results showed that the GNN-based segmentation is capable of accurate and reliable localization of the same interventionally interesting structures between images, not limited to the segmentation classes. The reported average target registration errors of 2.2$\pm$1.3 mm and 2.7$\pm$1.4 mm, for aligning holdout test images with a reference and for aligning two test images, respectively, were by a considerable margin lower than those from the tested non-learning and learning-based registration algorithms. Further ablation studies assess the contributions towards the registration performance, from individual components in the originally segmentation-purposed network and its training algorithm. The results highlight that the proposed segmentation-in-lieu-of-registration approach shares methodological similarities with existing registration methods, such as the use of displacement smoothness constraint and point distance minimization albeit on non-grid graphs, which interestingly yielded benefits for both segmentation and registration. We, therefore, conclude that the template-based GNN segmentation can effectively establish spatial correspondence in our application, without any other dedicated registration algorithms.
Abstract:Taking full advantage of the excellent performance of StyleGAN, style transfer-based face swapping methods have been extensively investigated recently. However, these studies require separate face segmentation and blending modules for successful face swapping, and the fixed selection of the manipulated latent code in these works is reckless, thus degrading face swapping quality, generalizability, and practicability. This paper proposes a novel and end-to-end integrated framework for high resolution and attribute preservation face swapping via Adaptive Latent Representation Learning. Specifically, we first design a multi-task dual-space face encoder by sharing the underlying feature extraction network to simultaneously complete the facial region perception and face encoding. This encoder enables us to control the face pose and attribute individually, thus enhancing the face swapping quality. Next, we propose an adaptive latent codes swapping module to adaptively learn the mapping between the facial attributes and the latent codes and select effective latent codes for improved retention of facial attributes. Finally, the initial face swapping image generated by StyleGAN2 is blended with the facial region mask generated by our encoder to address the background blur problem. Our framework integrating facial perceiving and blending into the end-to-end training and testing process can achieve high realistic face-swapping on wild faces without segmentation masks. Experimental results demonstrate the superior performance of our approach over state-of-the-art methods.
Abstract:The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Abstract:Prompt tuning (PT) which only tunes the embeddings of an additional sequence of tokens per task, keeping the pre-trained language model (PLM) frozen, has shown remarkable performance in few-shot learning. Despite this, PT has been shown to rely heavily on good initialization of the prompt embeddings. In this work, we study meta prompt tuning (MPT) to systematically explore how meta-learning can help improve (if it can) cross-task generalization in PT through learning to initialize the prompt embeddings from other relevant tasks. We empirically analyze a representative set of meta learning algorithms in a wide range of adaptation settings with different source/target task configurations on a large set of few-shot tasks. With extensive experiments and analysis, we demonstrate the effectiveness of MPT. We find the improvement to be significant particularly on classification tasks. For other kinds of tasks such as question answering, we observe that while MPT can outperform PT in most cases, it does not always outperform multi-task learning. We further provide an in-depth analysis from the perspective of task similarity.
Abstract:Automatic knowledge graph construction aims to manufacture structured human knowledge. To this end, much effort has historically been spent extracting informative fact patterns from different data sources. However, more recently, research interest has shifted to acquiring conceptualized structured knowledge beyond informative data. In addition, researchers have also been exploring new ways of handling sophisticated construction tasks in diversified scenarios. Thus, there is a demand for a systematic review of paradigms to organize knowledge structures beyond data-level mentions. To meet this demand, we comprehensively survey more than 300 methods to summarize the latest developments in knowledge graph construction. A knowledge graph is built in three steps: knowledge acquisition, knowledge refinement, and knowledge evolution. The processes of knowledge acquisition are reviewed in detail, including obtaining entities with fine-grained types and their conceptual linkages to knowledge graphs; resolving coreferences; and extracting entity relationships in complex scenarios. The survey covers models for knowledge refinement, including knowledge graph completion, and knowledge fusion. Methods to handle knowledge evolution are also systematically presented, including condition knowledge acquisition, condition knowledge graph completion, and knowledge dynamic. We present the paradigms to compare the distinction among these methods along the axis of the data environment, motivation, and architecture. Additionally, we also provide briefs on accessible resources that can help readers to develop practical knowledge graph systems. The survey concludes with discussions on the challenges and possible directions for future exploration.