Abstract:Foundation models leverage large-scale pretraining to capture extensive knowledge, demonstrating generalization in a wide range of language tasks. By comparison, vision foundation models (VFMs) often exhibit uneven improvements across downstream tasks, despite substantial computational investment. We postulate that this limitation arises from a mismatch between pretraining objectives and the demands of downstream vision-and-imaging tasks. Pretraining strategies like masked image reconstruction or contrastive learning shape representations for tasks such as recovery of generic visual patterns or global semantic structures, which may not align with the task-specific requirements of downstream applications including segmentation, classification, or image synthesis. To investigate this in a concrete real-world clinical area, we assess two VFMs, a reconstruction-focused MAE-based model (ProFound) and a contrastive-learning-based model (ProViCNet), on five prostate multiparametric MR imaging tasks, examining how such task alignment influences transfer performance, i.e., from pretraining to fine-tuning. Our findings indicate that better alignment between pretraining and downstream tasks, measured by simple divergence metrics such as maximum-mean-discrepancy (MMD) between the same features before and after fine-tuning, correlates with greater performance improvements and faster convergence, emphasizing the importance of designing and analyzing pretraining objectives with downstream applicability in mind.
Abstract:Osteosarcoma (OS) is an aggressive primary bone malignancy. Accurate histopathological assessment of viable versus non-viable tumor regions after neoadjuvant chemotherapy is critical for prognosis and treatment planning, yet manual evaluation remains labor-intensive, subjective, and prone to inter-observer variability. Recent advances in digital pathology have enabled automated necrosis quantification. Evaluating on test data, independently sampled on patient-level, revealed that the deep learning model performance dropped significantly from the tile-level generalization ability reported in previous studies. First, this work proposes the use of radiomic features as additional input in model training. We show that, despite that they are derived from the images, such a multimodal input effectively improved the classification performance, in addition to its added benefits in interpretability. Second, this work proposes to optimize two binary classification tasks with hierarchical classes (i.e. tumor-vs-non-tumor and viable-vs-non-viable), as opposed to the alternative ``flat'' three-class classification task (i.e. non-tumor, non-viable tumor, viable tumor), thereby enabling a hierarchical loss. We show that such a hierarchical loss, with trainable weightings between the two tasks, the per-class performance can be improved significantly. Using the TCIA OS Tumor Assessment dataset, we experimentally demonstrate the benefits from each of the proposed new approaches and their combination, setting a what we consider new state-of-the-art performance on this open dataset for this application. Code and trained models: https://github.com/YaxiiC/RadiomicsOS.git.
Abstract:While Diffusion Transformers (DiTs) have achieved notable progress in video generation, this long-sequence generation task remains constrained by the quadratic complexity inherent to self-attention mechanisms, creating significant barriers to practical deployment. Although sparse attention methods attempt to address this challenge, existing approaches either rely on oversimplified static patterns or require computationally expensive sampling operations to achieve dynamic sparsity, resulting in inaccurate pattern predictions and degraded generation quality. To overcome these limitations, we propose a \underline{\textbf{M}}ixtrue-\underline{\textbf{O}}f-\underline{\textbf{D}}istribution \textbf{DiT} (\textbf{MOD-DiT}), a novel sampling-free dynamic attention framework that accurately models evolving attention patterns through a two-stage process. First, MOD-DiT leverages prior information from early denoising steps and adopts a {distributed mixing approach} to model an efficient linear approximation model, which is then used to predict mask patterns for a specific denoising interval. Second, an online block masking strategy dynamically applies these predicted masks while maintaining historical sparsity information, eliminating the need for repetitive sampling operations. Extensive evaluations demonstrate consistent acceleration and quality improvements across multiple benchmarks and model architectures, validating MOD-DiT's effectiveness for efficient, high-quality video generation while overcoming the computational limitations of traditional sparse attention approaches.
Abstract:For automated assessment of knee MRI scans, both accuracy and interpretability are essential for clinical use and adoption. Traditional radiomics rely on predefined features chosen at the population level; while more interpretable, they are often too restrictive to capture patient-specific variability and can underperform end-to-end deep learning (DL). To address this, we propose two complementary strategies that bring individuality and interpretability: radiomic fingerprints and healthy personas. First, a radiomic fingerprint is a dynamically constructed, patient-specific feature set derived from MRI. Instead of applying a uniform population-level signature, our model predicts feature relevance from a pool of candidate features and selects only those most predictive for each patient, while maintaining feature-level interpretability. This fingerprint can be viewed as a latent-variable model of feature usage, where an image-conditioned predictor estimates usage probabilities and a transparent logistic regression with global coefficients performs classification. Second, a healthy persona synthesises a pathology-free baseline for each patient using a diffusion model trained to reconstruct healthy knee MRIs. Comparing features extracted from pathological images against their personas highlights deviations from normal anatomy, enabling intuitive, case-specific explanations of disease manifestations. We systematically compare fingerprints, personas, and their combination across three clinical tasks. Experimental results show that both approaches yield performance comparable to or surpassing state-of-the-art DL models, while supporting interpretability at multiple levels. Case studies further illustrate how these perspectives facilitate human-explainable biomarker discovery and pathology localisation.
Abstract:Traditionally, ultrasound skill assessment has relied on expert supervision and feedback, a process known for its subjectivity and time-intensive nature. Previous works on quantitative and automated skill assessment have predominantly employed supervised learning methods, often limiting the analysis to predetermined or assumed factors considered influential in determining skill levels. In this work, we propose a novel bi-level optimisation framework that assesses fetal ultrasound skills by how well a task is performed on the acquired fetal ultrasound images, without using manually predefined skill ratings. The framework consists of a clinical task predictor and a skill predictor, which are optimised jointly by refining the two networks simultaneously. We validate the proposed method on real-world clinical ultrasound videos of scanning the fetal head. The results demonstrate the feasibility of predicting ultrasound skills by the proposed framework, which quantifies optimised task performance as a skill indicator.
Abstract:Cryoablation is a minimally invasive localised treatment for prostate cancer that destroys malignant tissue during de-freezing, while sparing surrounding healthy structures. Its success depends on accurate preoperative planning of cryoprobe placements to fully cover the tumour and avoid critical anatomy. This planning is currently manual, expertise-dependent, and time-consuming, leading to variability in treatment quality and limited scalability. In this work, we introduce Cryo-RL, a reinforcement learning framework that models cryoablation planning as a Markov decision process and learns an optimal policy for cryoprobe placement. Within a simulated environment that models clinical constraints and stochastic intraoperative variability, an agent sequentially selects cryoprobe positions and ice sphere diameters. Guided by a reward function based on tumour coverage, this agent learns a cryoablation strategy that leads to optimal cryoprobe placements without the need for any manually-designed plans. Evaluated on 583 retrospective prostate cancer cases, Cryo-RL achieved over 8 percentage-point Dice improvements compared with the best automated baselines, based on geometric optimisation, and matched human expert performance while requiring substantially less planning time. These results highlight the potential of reinforcement learning to deliver clinically viable, reproducible, and efficient cryoablation plans.
Abstract:Radiologists often mix medical image reading strategies, including inspection of individual modalities and local image regions, using information at different locations from different images independently as well as concurrently. In this paper, we propose a recommend system to assist machine learning-based segmentation models, by suggesting appropriate image portions along with the best modality, such that prostate cancer segmentation performance can be maximised. Our approach trains a policy network that assists tumor localisation, by recommending both the optimal imaging modality and the specific sections of interest for review. During training, a pre-trained segmentation network mimics radiologist inspection on individual or variable combinations of these imaging modalities and their sections - selected by the policy network. Taking the locally segmented regions as an input for the next step, this dynamic decision making process iterates until all cancers are best localised. We validate our method using a data set of 1325 labelled multiparametric MRI images from prostate cancer patients, demonstrating its potential to improve annotation efficiency and segmentation accuracy, especially when challenging pathology is present. Experimental results show that our approach can surpass standard segmentation networks. Perhaps more interestingly, our trained agent independently developed its own optimal strategy, which may or may not be consistent with current radiologist guidelines such as PI-RADS. This observation also suggests a promising interactive application, in which the proposed policy networks assist human radiologists.
Abstract:Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
Abstract:Accurate tumour segmentation is vital for various targeted diagnostic and therapeutic procedures for cancer, e.g., planning biopsies or tumour ablations. Manual delineation is extremely labour-intensive, requiring substantial expert time. Fully-supervised machine learning models aim to automate such localisation tasks, but require a large number of costly and often subjective 3D voxel-level labels for training. The high-variance and subjectivity in such labels impacts model generalisability, even when large datasets are available. Histopathology labels may offer more objective labels but the infeasibility of acquiring pixel-level annotations to develop tumour localisation methods based on histology remains challenging in-vivo. In this work, we propose a novel weakly-supervised semantic segmentation framework called SPARS (Self-Play Adversarial Reinforcement Learning for Segmentation), which utilises an object presence classifier, trained on a small number of image-level binary cancer presence labels, to localise cancerous regions on CT scans. Such binary labels of patient-level cancer presence can be sourced more feasibly from biopsies and histopathology reports, enabling a more objective cancer localisation on medical images. Evaluating with real patient data, we observed that SPARS yielded a mean dice score of $77.3 \pm 9.4$, which outperformed other weakly-supervised methods by large margins. This performance was comparable with recent fully-supervised methods that require voxel-level annotations. Our results demonstrate the potential of using SPARS to reduce the need for extensive human-annotated labels to detect cancer in real-world healthcare settings.
Abstract:Automated segmentation of cancer on medical images can aid targeted diagnostic and therapeutic procedures. However, its adoption is limited by the high cost of expert annotations required for training and inter-observer variability in datasets. While weakly-supervised methods mitigate some challenges, using binary histology labels for training as opposed to requiring full segmentation, they require large paired datasets of histology and images, which are difficult to curate. Similarly, promptable segmentation aims to allow segmentation with no re-training for new tasks at inference, however, existing models perform poorly on pathological regions, again necessitating large datasets for training. In this work we propose a novel approach for promptable segmentation requiring only 24 fully-segmented images, supplemented by 8 weakly-labelled images, for training. Curating this minimal data to a high standard is relatively feasible and thus issues with the cost and variability of obtaining labels can be mitigated. By leveraging two classifiers, one weakly-supervised and one fully-supervised, our method refines segmentation through a guided search process initiated by a single-point prompt. Our approach outperforms existing promptable segmentation methods, and performs comparably with fully-supervised methods, for the task of prostate cancer segmentation, while using substantially less annotated data (up to 100X less). This enables promptable segmentation with very minimal labelled data, such that the labels can be curated to a very high standard.