Abstract:Foundation models pre-trained on web-scale vision-language data, such as CLIP, are widely used as cornerstones of powerful machine learning systems. While pre-training offers clear advantages for downstream learning, it also endows downstream models with shared adversarial vulnerabilities that can be easily identified through the open-sourced foundation model. In this work, we expose such vulnerabilities in CLIP's downstream models and show that foundation models can serve as a basis for attacking their downstream systems. In particular, we propose a simple yet effective adversarial attack strategy termed Patch Representation Misalignment (PRM). Solely based on open-sourced CLIP vision encoders, this method produces adversaries that simultaneously fool more than 20 downstream models spanning 4 common vision-language tasks (semantic segmentation, object detection, image captioning and visual question-answering). Our findings highlight the concerning safety risks introduced by the extensive usage of public foundational models in the development of downstream systems, calling for extra caution in these scenarios.
Abstract:We present DetToolChain, a novel prompting paradigm, to unleash the zero-shot object detection ability of multimodal large language models (MLLMs), such as GPT-4V and Gemini. Our approach consists of a detection prompting toolkit inspired by high-precision detection priors and a new Chain-of-Thought to implement these prompts. Specifically, the prompts in the toolkit are designed to guide the MLLM to focus on regional information (e.g., zooming in), read coordinates according to measure standards (e.g., overlaying rulers and compasses), and infer from the contextual information (e.g., overlaying scene graphs). Building upon these tools, the new detection chain-of-thought can automatically decompose the task into simple subtasks, diagnose the predictions, and plan for progressive box refinements. The effectiveness of our framework is demonstrated across a spectrum of detection tasks, especially hard cases. Compared to existing state-of-the-art methods, GPT-4V with our DetToolChain improves state-of-the-art object detectors by +21.5% AP50 on MS COCO Novel class set for open-vocabulary detection, +24.23% Acc on RefCOCO val set for zero-shot referring expression comprehension, +14.5% AP on D-cube describe object detection FULL setting.
Abstract:This paper presents a novel paradigm for building scalable 3D generative models utilizing pre-trained video diffusion models. The primary obstacle in developing foundation 3D generative models is the limited availability of 3D data. Unlike images, texts, or videos, 3D data are not readily accessible and are difficult to acquire. This results in a significant disparity in scale compared to the vast quantities of other types of data. To address this issue, we propose using a video diffusion model, trained with extensive volumes of text, images, and videos, as a knowledge source for 3D data. By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model. The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds and achieves superior performance when compared to current SOTA feed-forward 3D generative models, with users preferring our results over 70% of the time.
Abstract:Different from traditional task-specific vision models, recent large VLMs can readily adapt to different vision tasks by simply using different textual instructions, i.e., prompts. However, a well-known concern about traditional task-specific vision models is that they can be misled by imperceptible adversarial perturbations. Furthermore, the concern is exacerbated by the phenomenon that the same adversarial perturbations can fool different task-specific models. Given that VLMs rely on prompts to adapt to different tasks, an intriguing question emerges: Can a single adversarial image mislead all predictions of VLMs when a thousand different prompts are given? This question essentially introduces a novel perspective on adversarial transferability: cross-prompt adversarial transferability. In this work, we propose the Cross-Prompt Attack (CroPA). This proposed method updates the visual adversarial perturbation with learnable prompts, which are designed to counteract the misleading effects of the adversarial image. By doing this, CroPA significantly improves the transferability of adversarial examples across prompts. Extensive experiments are conducted to verify the strong cross-prompt adversarial transferability of CroPA with prevalent VLMs including Flamingo, BLIP-2, and InstructBLIP in various different tasks. Our source code is available at \url{https://github.com/Haochen-Luo/CroPA}.
Abstract:We propose GaussCtrl, a text-driven method to edit a 3D scene reconstructed by the 3D Gaussian Splatting (3DGS). Our method first renders a collection of images by using the 3DGS and edits them by using a pre-trained 2D diffusion model (ControlNet) based on the input prompt, which is then used to optimise the 3D model. Our key contribution is multi-view consistent editing, which enables editing all images together instead of iteratively editing one image while updating the 3D model as in previous works. It leads to faster editing as well as higher visual quality. This is achieved by the two terms: (a) depth-conditioned editing that enforces geometric consistency across multi-view images by leveraging naturally consistent depth maps. (b) attention-based latent code alignment that unifies the appearance of edited images by conditioning their editing to several reference views through self and cross-view attention between images' latent representations. Experiments demonstrate that our method achieves faster editing and better visual results than previous state-of-the-art methods.
Abstract:This paper focuses on the challenge of answering questions in scenarios that are composed of rich and complex dynamic audio-visual components. Although existing Multimodal Large Language Models (MLLMs) can respond to audio-visual content, these responses are sometimes ambiguous and fail to describe specific audio-visual events. To overcome this limitation, we introduce the CAT, which enhances MLLM in three ways: 1) besides straightforwardly bridging audio and video, we design a clue aggregator that aggregates question-related clues in dynamic audio-visual scenarios to enrich the detailed knowledge required for large language models. 2) CAT is trained on a mixed multimodal dataset, allowing direct application in audio-visual scenarios. Notably, we collect an audio-visual joint instruction dataset named AVinstruct, to further enhance the capacity of CAT to model cross-semantic correlations. 3) we propose AI-assisted ambiguity-aware direct preference optimization, a strategy specialized in retraining the model to favor the non-ambiguity response and improve the ability to localize specific audio-visual objects. Extensive experimental results demonstrate that CAT outperforms existing methods on multimodal tasks, especially in Audio-Visual Question Answering (AVQA) tasks. The codes and the collected instructions are released at https://github.com/rikeilong/Bay-CAT.
Abstract:Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
Abstract:Recently, Multimodal LLMs (MLLMs) have shown a great ability to understand images. However, like traditional vision models, they are still vulnerable to adversarial images. Meanwhile, Chain-of-Thought (CoT) reasoning has been widely explored on MLLMs, which not only improves model's performance, but also enhances model's explainability by giving intermediate reasoning steps. Nevertheless, there is still a lack of study regarding MLLMs' adversarial robustness with CoT and an understanding of what the rationale looks like when MLLMs infer wrong answers with adversarial images. Our research evaluates the adversarial robustness of MLLMs when employing CoT reasoning, finding that CoT marginally improves adversarial robustness against existing attack methods. Moreover, we introduce a novel stop-reasoning attack technique that effectively bypasses the CoT-induced robustness enhancements. Finally, we demonstrate the alterations in CoT reasoning when MLLMs confront adversarial images, shedding light on their reasoning process under adversarial attacks.
Abstract:Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects like vulnerability to backdoored samples, systematic biases, and in general, reduced accuracy on certain input domains. Often, all manipulated training samples are not known, and only a small, representative subset of the affected data is flagged. We formalize "Corrective Machine Unlearning" as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, possibly knowing only a subset of impacted samples. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including the gold-standard retraining-from-scratch, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, SSD, achieves limited success in unlearning adverse effects with just a small portion of the manipulated samples, showing the tractability of this setting. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training.
Abstract:Large Language Model (LLM) agents have been increasingly adopted as simulation tools to model humans in applications such as social science. However, one fundamental question remains: can LLM agents really simulate human behaviors? In this paper, we focus on one of the most critical behaviors in human interactions, trust, and aim to investigate whether or not LLM agents can simulate human trust behaviors. We first find that LLM agents generally exhibit trust behaviors, referred to as agent trust, under the framework of Trust Games, which are widely recognized in behavioral economics. Then, we discover that LLM agents can have high behavioral alignment with humans regarding trust behaviors, indicating the feasibility to simulate human trust behaviors with LLM agents. In addition, we probe into the biases in agent trust and the differences in agent trust towards agents and humans. We also explore the intrinsic properties of agent trust under conditions including advanced reasoning strategies and external manipulations. We further offer important implications for various scenarios where trust is paramount. Our study represents a significant step in understanding the behaviors of LLM agents and the LLM-human analogy.