Abstract:Machine unlearning aims to selectively remove the influence of specific training samples to satisfy privacy regulations such as the GDPR's 'Right to be Forgotten'. However, many existing methods require access to the data being removed, exposing it to membership inference attacks and potential misuse of Personally Identifiable Information (PII). We address this critical challenge by proposing Shadow Unlearning, a novel paradigm of approximate unlearning, that performs machine unlearning on anonymized forget data without exposing PII. We further propose a novel privacy-preserving framework, Neuro-Semantic Projector Unlearning (NSPU) to achieve Shadow unlearning. To evaluate our method, we compile Multi-domain Fictitious Unlearning (MuFU) forget set across five diverse domains and introduce an evaluation stack to quantify the trade-off between knowledge retention and unlearning effectiveness. Experimental results on various LLMs show that NSPU achieves superior unlearning performance, preserves model utility, and enhances user privacy. Additionally, the proposed approach is at least 10 times more computationally efficient than standard unlearning approaches. Our findings foster a new direction for privacy-aware machine unlearning that balances data protection and model fidelity.
Abstract:Modern enterprise retrieval systems must handle short, underspecified queries such as ``foreign transaction fee refund'' and ``recent check status''. In these cases, semantic nuance and metadata matter but per-query large language model (LLM) re-ranking and manual labeling are costly. We present Metadata-Aware Cross-Model Alignment (MACA), which distills a calibrated metadata aware LLM re-ranker into a compact student retriever, avoiding online LLM calls. A metadata-aware prompt verifies the teacher's trustworthiness by checking consistency under permutations and robustness to paraphrases, then supplies listwise scores, hard negatives, and calibrated relevance margins. The student trains with MACA's MetaFusion objective, which combines a metadata conditioned ranking loss with a cross model margin loss so it learns to push the correct answer above semantically similar candidates with mismatched topic, sub-topic, or entity. On a proprietary consumer banking FAQ corpus and BankFAQs, the MACA teacher surpasses a MAFA baseline at Accuracy@1 by five points on the proprietary set and three points on BankFAQs. MACA students substantially outperform pretrained encoders; e.g., on the proprietary corpus MiniLM Accuracy@1 improves from 0.23 to 0.48, while keeping inference free of LLM calls and supporting retrieval-augmented generation.
Abstract:Personalized AI agents rely on access to a user's digital footprint, which often includes sensitive data from private emails, chats and purchase histories. Yet this access creates a fundamental societal and privacy risk: systems lacking social-context awareness can unintentionally expose user secrets, threatening digital well-being. We introduce PrivacyBench, a benchmark with socially grounded datasets containing embedded secrets and a multi-turn conversational evaluation to measure secret preservation. Testing Retrieval-Augmented Generation (RAG) assistants reveals that they leak secrets in up to 26.56% of interactions. A privacy-aware prompt lowers leakage to 5.12%, yet this measure offers only partial mitigation. The retrieval mechanism continues to access sensitive data indiscriminately, which shifts the entire burden of privacy preservation onto the generator. This creates a single point of failure, rendering current architectures unsafe for wide-scale deployment. Our findings underscore the urgent need for structural, privacy-by-design safeguards to ensure an ethical and inclusive web for everyone.




Abstract:In context learning (ICL) underpins recent advances in large language models (LLMs), although its role and performance in causal reasoning remains unclear. Causal reasoning demands multihop composition and strict conjunctive control, and reliance on spurious lexical relations of the input could provide misleading results. We hypothesize that, due to their ability to project the input into a latent space, encoder and encoder decoder architectures are better suited for said multihop conjunctive reasoning versus decoder only models. To do this, we compare fine-tuned versions of all the aforementioned architectures with zero and few shot ICL in both natural language and non natural language scenarios. We find that ICL alone is insufficient for reliable causal reasoning, often overfocusing on irrelevant input features. In particular, decoder only models are noticeably brittle to distributional shifts, while finetuned encoder and encoder decoder models can generalize more robustly across our tests, including the non natural language split. Both architectures are only matched or surpassed by decoder only architectures at large scales. We conclude by noting that for cost effective, short horizon robust causal reasoning, encoder or encoder decoder architectures with targeted finetuning are preferable.
Abstract:Large Language Models (LLMs) have demonstrated strong capabilities as autonomous agents through tool use, planning, and decision-making abilities, leading to their widespread adoption across diverse tasks. As task complexity grows, multi-agent LLM systems are increasingly used to solve problems collaboratively. However, safety and security of these systems remains largely under-explored. Existing benchmarks and datasets predominantly focus on single-agent settings, failing to capture the unique vulnerabilities of multi-agent dynamics and co-ordination. To address this gap, we introduce $\textbf{T}$hreats and $\textbf{A}$ttacks in $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{S}$ystems ($\textbf{TAMAS}$), a benchmark designed to evaluate the robustness and safety of multi-agent LLM systems. TAMAS includes five distinct scenarios comprising 300 adversarial instances across six attack types and 211 tools, along with 100 harmless tasks. We assess system performance across ten backbone LLMs and three agent interaction configurations from Autogen and CrewAI frameworks, highlighting critical challenges and failure modes in current multi-agent deployments. Furthermore, we introduce Effective Robustness Score (ERS) to assess the tradeoff between safety and task effectiveness of these frameworks. Our findings show that multi-agent systems are highly vulnerable to adversarial attacks, underscoring the urgent need for stronger defenses. TAMAS provides a foundation for systematically studying and improving the safety of multi-agent LLM systems.
Abstract:Curating high-quality, domain-specific datasets is a major bottleneck for deploying robust vision systems, requiring complex trade-offs between data quality, diversity, and cost when researching vast, unlabeled data lakes. We introduce Labeling Copilot, the first data curation deep research agent for computer vision. A central orchestrator agent, powered by a large multimodal language model, uses multi-step reasoning to execute specialized tools across three core capabilities: (1) Calibrated Discovery sources relevant, in-distribution data from large repositories; (2) Controllable Synthesis generates novel data for rare scenarios with robust filtering; and (3) Consensus Annotation produces accurate labels by orchestrating multiple foundation models via a novel consensus mechanism incorporating non-maximum suppression and voting. Our large-scale validation proves the effectiveness of Labeling Copilot's components. The Consensus Annotation module excels at object discovery: on the dense COCO dataset, it averages 14.2 candidate proposals per image-nearly double the 7.4 ground-truth objects-achieving a final annotation mAP of 37.1%. On the web-scale Open Images dataset, it navigated extreme class imbalance to discover 903 new bounding box categories, expanding its capability to over 1500 total. Concurrently, our Calibrated Discovery tool, tested at a 10-million sample scale, features an active learning strategy that is up to 40x more computationally efficient than alternatives with equivalent sample efficiency. These experiments validate that an agentic workflow with optimized, scalable tools provides a robust foundation for curating industrial-scale datasets.
Abstract:How similar are model outputs across languages? In this work, we study this question using a recently proposed model similarity metric $\kappa_p$ applied to 20 languages and 47 subjects in GlobalMMLU. Our analysis reveals that a model's responses become increasingly consistent across languages as its size and capability grow. Interestingly, models exhibit greater cross-lingual consistency within themselves than agreement with other models prompted in the same language. These results highlight not only the value of $\kappa_p$ as a practical tool for evaluating multilingual reliability, but also its potential to guide the development of more consistent multilingual systems.
Abstract:Vision Language Models achieve impressive multi-modal performance but often inherit gender biases from their training data. This bias might be coming from both the vision and text modalities. In this work, we dissect the contributions of vision and text backbones to these biases by applying targeted debiasing using Counterfactual Data Augmentation and Task Vector methods. Inspired by data-efficient approaches in hate-speech classification, we introduce a novel metric, Degree of Stereotypicality and a corresponding debiasing method, Data Augmentation Using Degree of Stereotypicality - DAUDoS, to reduce bias with minimal computational cost. We curate a gender annotated dataset and evaluate all methods on VisoGender benchmark to quantify improvements and identify dominant source of bias. Our results show that CDA reduces the gender gap by 6% and DAUDoS by 3% but using only one-third of the data. Both methods also improve the model's ability to correctly identify gender in images by 3%, with DAUDoS achieving this improvement using only almost one-third of training data. From our experiment's, we observed that CLIP's vision encoder is more biased whereas PaliGemma2's text encoder is more biased. By identifying whether bias stems more from vision or text encoders, our work enables more targeted and effective bias mitigation strategies in future multi-modal systems.
Abstract:Large Language Models (LLMs) demonstrate impressive reasoning capabilities in familiar contexts, but struggle when the context conflicts with their parametric knowledge. To investigate this phenomenon, we introduce CounterLogic, a dataset containing 1,800 examples across 9 logical schemas, explicitly designed to evaluate logical reasoning through counterfactual (hypothetical knowledge-conflicting) scenarios. Our systematic evaluation of 11 LLMs across 6 different datasets reveals a consistent performance degradation, with accuracies dropping by 27% on average when reasoning through counterfactual information. We propose Self-Segregate, a prompting method enabling metacognitive awareness (explicitly identifying knowledge conflicts) before reasoning. Our method dramatically narrows the average performance gaps from 27% to just 11%, while significantly increasing the overall accuracy (+7.5%). We discuss the implications of these findings and draw parallels to human cognitive processes, particularly on how humans disambiguate conflicting information during reasoning tasks. Our findings offer practical insights for understanding and enhancing LLMs reasoning capabilities in real-world applications, especially where models must logically reason independently of their factual knowledge.
Abstract:Knowledge Graph Foundation Models (KGFMs) have shown promise in enabling zero-shot reasoning over unseen graphs by learning transferable patterns. However, most existing KGFMs rely solely on graph structure, overlooking the rich semantic signals encoded in textual attributes. We introduce SEMMA, a dual-module KGFM that systematically integrates transferable textual semantics alongside structure. SEMMA leverages Large Language Models (LLMs) to enrich relation identifiers, generating semantic embeddings that subsequently form a textual relation graph, which is fused with the structural component. Across 54 diverse KGs, SEMMA outperforms purely structural baselines like ULTRA in fully inductive link prediction. Crucially, we show that in more challenging generalization settings, where the test-time relation vocabulary is entirely unseen, structural methods collapse while SEMMA is 2x more effective. Our findings demonstrate that textual semantics are critical for generalization in settings where structure alone fails, highlighting the need for foundation models that unify structural and linguistic signals in knowledge reasoning.