Image deblurring is a critical task in the field of image restoration, aiming to eliminate blurring artifacts. However, the challenge of addressing non-uniform blurring leads to an ill-posed problem, which limits the generalization performance of existing deblurring models. To solve the problem, we propose a framework SAM-Deblur, integrating prior knowledge from the Segment Anything Model (SAM) into the deblurring task for the first time. In particular, SAM-Deblur is divided into three stages. First, We preprocess the blurred images, obtain image masks via SAM, and propose a mask dropout method for training to enhance model robustness. Then, to fully leverage the structural priors generated by SAM, we propose a Mask Average Pooling (MAP) unit specifically designed to average SAM-generated segmented areas, serving as a plug-and-play component which can be seamlessly integrated into existing deblurring networks. Finally, we feed the fused features generated by the MAP Unit into the deblurring model to obtain a sharp image. Experimental results on the RealBlurJ, ReloBlur, and REDS datasets reveal that incorporating our methods improves NAFNet's PSNR by 0.05, 0.96, and 7.03, respectively. Code will be available at \href{https://github.com/HPLQAQ/SAM-Deblur}{SAM-Deblur}.
Spiking neural networks (SNNs) have tremendous potential for energy-efficient neuromorphic chips due to their binary and event-driven architecture. SNNs have been primarily used in classification tasks, but limited exploration on image generation tasks. To fill the gap, we propose a Spiking-Diffusion model, which is based on the vector quantized discrete diffusion model. First, we develop a vector quantized variational autoencoder with SNNs (VQ-SVAE) to learn a discrete latent space for images. In VQ-SVAE, image features are encoded using both the spike firing rate and postsynaptic potential, and an adaptive spike generator is designed to restore embedding features in the form of spike trains. Next, we perform absorbing state diffusion in the discrete latent space and construct a spiking diffusion image decoder (SDID) with SNNs to denoise the image. Our work is the first to build the diffusion model entirely from SNN layers. Experimental results on MNIST, FMNIST, KMNIST, Letters, and Cifar10 demonstrate that Spiking-Diffusion outperforms the existing SNN-based generation model. We achieve FIDs of 37.50, 91.98, 59.23, 67.41, and 120.5 on the above datasets respectively, with reductions of 58.60\%, 18.75\%, 64.51\%, 29.75\%, and 44.88\% in FIDs compared with the state-of-art work. Our code will be available at \url{https://github.com/Arktis2022/Spiking-Diffusion}.
Artificial intelligence (AI) has demonstrated the ability to extract insights from data, but the issue of fairness remains a concern in high-stakes fields such as healthcare. Despite extensive discussion and efforts in algorithm development, AI fairness and clinical concerns have not been adequately addressed. In this paper, we discuss the misalignment between technical and clinical perspectives of AI fairness, highlight the barriers to AI fairness' translation to healthcare, advocate multidisciplinary collaboration to bridge the knowledge gap, and provide possible solutions to address the clinical concerns pertaining to AI fairness.
Discovering novel concepts from unlabelled data and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where either access to labelled data is provided for discovering novel concepts (e.g., NCD) or learning occurs for a limited number of incremental steps (e.g., class-iNCD). In this work we challenge the status quo and propose a more challenging and practical learning paradigm called MSc-iNCD, where learning occurs continuously and unsupervisedly, while exploiting the rich priors from large-scale pre-trained models. To this end, we propose simple baselines that are not only resilient under longer learning scenarios, but are surprisingly strong when compared with sophisticated state-of-the-art methods. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines, which significantly raises the bar.
We propose FedScore, a privacy-preserving federated learning framework for scoring system generation across multiple sites to facilitate cross-institutional collaborations. The FedScore framework includes five modules: federated variable ranking, federated variable transformation, federated score derivation, federated model selection and federated model evaluation. To illustrate usage and assess FedScore's performance, we built a hypothetical global scoring system for mortality prediction within 30 days after a visit to an emergency department using 10 simulated sites divided from a tertiary hospital in Singapore. We employed a pre-existing score generator to construct 10 local scoring systems independently at each site and we also developed a scoring system using centralized data for comparison. We compared the acquired FedScore model's performance with that of other scoring models using the receiver operating characteristic (ROC) analysis. The FedScore model achieved an average area under the curve (AUC) value of 0.763 across all sites, with a standard deviation (SD) of 0.020. We also calculated the average AUC values and SDs for each local model, and the FedScore model showed promising accuracy and stability with a high average AUC value which was closest to the one of the pooled model and SD which was lower than that of most local models. This study demonstrates that FedScore is a privacy-preserving scoring system generator with potentially good generalizability.
Current practice in interpretable machine learning often focuses on explaining the final model trained from data, e.g., by using the Shapley additive explanations (SHAP) method. The recently developed Shapley variable importance cloud (ShapleyVIC) extends the current practice to a group of "nearly optimal models" to provide comprehensive and robust variable importance assessments, with estimated uncertainty intervals for a more complete understanding of variable contributions to predictions. ShapleyVIC was initially developed for applications with traditional regression models, and the benefits of ShapleyVIC inference have been demonstrated in real-life prediction tasks using the logistic regression model. However, as a model-agnostic approach, ShapleyVIC application is not limited to such scenarios. In this work, we extend ShapleyVIC implementation for machine learning models to enable wider applications, and propose it as a useful complement to the current SHAP analysis to enable more trustworthy applications of these black-box models.
Objective: The proper handling of missing values is critical to delivering reliable estimates and decisions, especially in high-stakes fields such as clinical research. The increasing diversity and complexity of data have led many researchers to develop deep learning (DL)-based imputation techniques. We conducted a systematic review to evaluate the use of these techniques, with a particular focus on data types, aiming to assist healthcare researchers from various disciplines in dealing with missing values. Methods: We searched five databases (MEDLINE, Web of Science, Embase, CINAHL, and Scopus) for articles published prior to August 2021 that applied DL-based models to imputation. We assessed selected publications from four perspectives: health data types, model backbone (i.e., main architecture), imputation strategies, and comparison with non-DL-based methods. Based on data types, we created an evidence map to illustrate the adoption of DL models. Results: We included 64 articles, of which tabular static (26.6%, 17/64) and temporal data (37.5%, 24/64) were the most frequently investigated. We found that model backbone(s) differed among data types as well as the imputation strategy. The "integrated" strategy, that is, the imputation task being solved concurrently with downstream tasks, was popular for tabular temporal (50%, 12/24) and multi-modal data (71.4%, 5/7), but limited for other data types. Moreover, DL-based imputation methods yielded better imputation accuracy in most studies, compared with non-DL-based methods. Conclusion: DL-based imputation models can be customized based on data type, addressing the corresponding missing patterns, and its associated "integrated" strategy can enhance the efficacy of imputation, especially in scenarios where data is complex. Future research may focus on the portability and fairness of DL-based models for healthcare data imputation.
We study the new task of class-incremental Novel Class Discovery (class-iNCD), which refers to the problem of discovering novel categories in an unlabelled data set by leveraging a pre-trained model that has been trained on a labelled data set containing disjoint yet related categories. Apart from discovering novel classes, we also aim at preserving the ability of the model to recognize previously seen base categories. Inspired by rehearsal-based incremental learning methods, in this paper we propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes by jointly exploiting base class feature prototypes and feature-level knowledge distillation. We also propose a self-training clustering strategy that simultaneously clusters novel categories and trains a joint classifier for both the base and novel classes. This makes our method able to operate in a class-incremental setting. Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches. Code is available at https://github.com/OatmealLiu/class-iNCD