Abstract:This paper explores image editing under the joint control of text and drag interactions. While recent advances in text-driven and drag-driven editing have achieved remarkable progress, they suffer from complementary limitations: text-driven methods excel in texture manipulation but lack precise spatial control, whereas drag-driven approaches primarily modify shape and structure without fine-grained texture guidance. To address these limitations, we propose a unified diffusion-based framework for joint drag-text image editing, integrating the strengths of both paradigms. Our framework introduces two key innovations: (1) Point-Cloud Deterministic Drag, which enhances latent-space layout control through 3D feature mapping, and (2) Drag-Text Guided Denoising, dynamically balancing the influence of drag and text conditions during denoising. Notably, our model supports flexible editing modes - operating with text-only, drag-only, or combined conditions - while maintaining strong performance in each setting. Extensive quantitative and qualitative experiments demonstrate that our method not only achieves high-fidelity joint editing but also matches or surpasses the performance of specialized text-only or drag-only approaches, establishing a versatile and generalizable solution for controllable image manipulation. Code will be made publicly available to reproduce all results presented in this work.
Abstract:The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.
Abstract:We present our solution to the MiGA Challenge at IJCAI 2025, which aims to recognize micro-gestures (MGs) from skeleton sequences for the purpose of hidden emotion understanding. MGs are characterized by their subtlety, short duration, and low motion amplitude, making them particularly challenging to model and classify. We adopt PoseC3D as the baseline framework and introduce three key enhancements: (1) a topology-aware skeleton representation specifically designed for the iMiGUE dataset to better capture fine-grained motion patterns; (2) an improved temporal processing strategy that facilitates smoother and more temporally consistent motion modeling; and (3) the incorporation of semantic label embeddings as auxiliary supervision to improve the model generalization. Our method achieves a Top-1 accuracy of 67.01\% on the iMiGUE test set. As a result of these contributions, our approach ranks third on the official MiGA Challenge leaderboard. The source code is available at \href{https://github.com/EGO-False-Sleep/Miga25_track1}{https://github.com/EGO-False-Sleep/Miga25\_track1}.
Abstract:Micro-Action Recognition (MAR) aims to classify subtle human actions in video. However, annotating MAR datasets is particularly challenging due to the subtlety of actions. To this end, we introduce the setting of Semi-Supervised MAR (SSMAR), where only a part of samples are labeled. We first evaluate traditional Semi-Supervised Learning (SSL) methods to SSMAR and find that these methods tend to overfit on inaccurate pseudo-labels, leading to error accumulation and degraded performance. This issue primarily arises from the common practice of directly using the predictions of classifier as pseudo-labels to train the model. To solve this issue, we propose a novel framework, called Asynchronous Pseudo Labeling and Training (APLT), which explicitly separates the pseudo-labeling process from model training. Specifically, we introduce a semi-supervised clustering method during the offline pseudo-labeling phase to generate more accurate pseudo-labels. Moreover, a self-adaptive thresholding strategy is proposed to dynamically filter noisy labels of different classes. We then build a memory-based prototype classifier based on the filtered pseudo-labels, which is fixed and used to guide the subsequent model training phase. By alternating the two pseudo-labeling and model training phases in an asynchronous manner, the model can not only be learned with more accurate pseudo-labels but also avoid the overfitting issue. Experiments on three MAR datasets show that our APLT largely outperforms state-of-the-art SSL methods. For instance, APLT improves accuracy by 14.5\% over FixMatch on the MA-12 dataset when using only 50\% labeled data. Code will be publicly available.
Abstract:Accurate lumbar spine segmentation is crucial for diagnosing spinal disorders. Existing methods typically use coarse-grained segmentation strategies that lack the fine detail needed for precise diagnosis. Additionally, their reliance on visual-only models hinders the capture of anatomical semantics, leading to misclassified categories and poor segmentation details. To address these limitations, we present ATM-Net, an innovative framework that employs an anatomy-aware, text-guided, multi-modal fusion mechanism for fine-grained segmentation of lumbar substructures, i.e., vertebrae (VBs), intervertebral discs (IDs), and spinal canal (SC). ATM-Net adopts the Anatomy-aware Text Prompt Generator (ATPG) to adaptively convert image annotations into anatomy-aware prompts in different views. These insights are further integrated with image features via the Holistic Anatomy-aware Semantic Fusion (HASF) module, building a comprehensive anatomical context. The Channel-wise Contrastive Anatomy-Aware Enhancement (CCAE) module further enhances class discrimination and refines segmentation through class-wise channel-level multi-modal contrastive learning. Extensive experiments on the MRSpineSeg and SPIDER datasets demonstrate that ATM-Net significantly outperforms state-of-the-art methods, with consistent improvements regarding class discrimination and segmentation details. For example, ATM-Net achieves Dice of 79.39% and HD95 of 9.91 pixels on SPIDER, outperforming the competitive SpineParseNet by 8.31% and 4.14 pixels, respectively.
Abstract:Test-time adaptation (TTA) aims to address distribution shifts between source and target data by relying solely on target data during testing. In open-world scenarios, models often encounter noisy samples, i.e., samples outside the in-distribution (ID) label space. Leveraging the zero-shot capability of pre-trained vision-language models (VLMs), this paper introduces Zero-Shot Noisy TTA (ZS-NTTA), focusing on adapting the model to target data with noisy samples during test-time in a zero-shot manner. We find existing TTA methods underperform under ZS-NTTA, often lagging behind even the frozen model. We conduct comprehensive experiments to analyze this phenomenon, revealing that the negative impact of unfiltered noisy data outweighs the benefits of clean data during model updating. Also, adapting a classifier for ID classification and noise detection hampers both sub-tasks. Built on this, we propose a framework that decouples the classifier and detector, focusing on developing an individual detector while keeping the classifier frozen. Technically, we introduce the Adaptive Noise Detector (AdaND), which utilizes the frozen model's outputs as pseudo-labels to train a noise detector. To handle clean data streams, we further inject Gaussian noise during adaptation, preventing the detector from misclassifying clean samples as noisy. Beyond the ZS-NTTA, AdaND can also improve the zero-shot out-of-distribution (ZS-OOD) detection ability of VLMs. Experiments show that AdaND outperforms in both ZS-NTTA and ZS-OOD detection. On ImageNet, AdaND achieves a notable improvement of $8.32\%$ in harmonic mean accuracy ($\text{Acc}_\text{H}$) for ZS-NTTA and $9.40\%$ in FPR95 for ZS-OOD detection, compared to SOTA methods. Importantly, AdaND is computationally efficient and comparable to the model-frozen method. The code is publicly available at: https://github.com/tmlr-group/ZS-NTTA.
Abstract:This paper addresses generalized category discovery (GCD), the task of clustering unlabeled data from potentially known or unknown categories with the help of labeled instances from each known category. Compared to traditional semi-supervised learning, GCD is more challenging because unlabeled data could be from novel categories not appearing in labeled data. Current state-of-the-art methods typically learn a parametric classifier assisted by self-distillation. While being effective, these methods do not make use of cross-instance similarity to discover class-specific semantics which are essential for representation learning and category discovery. In this paper, we revisit the association-based paradigm and propose a Prior-constrained Association Learning method to capture and learn the semantic relations within data. In particular, the labeled data from known categories provides a unique prior for the association of unlabeled data. Unlike previous methods that only adopts the prior as a pre or post-clustering refinement, we fully incorporate the prior into the association process, and let it constrain the association towards a reliable grouping outcome. The estimated semantic groups are utilized through non-parametric prototypical contrast to enhance the representation learning. A further combination of both parametric and non-parametric classification complements each other and leads to a model that outperforms existing methods by a significant margin. On multiple GCD benchmarks, we perform extensive experiments and validate the effectiveness of our proposed method.
Abstract:We introduce \textbf{Knowledge Swapping}, a novel task designed to selectively regulate knowledge of a pretrained model by enabling the forgetting of user\-specified information, retaining essential knowledge, and acquiring new knowledge simultaneously. By delving into the analysis of knock-on feature hierarchy, we find that incremental learning typically progresses from low\-level representations to higher\-level semantics, whereas forgetting tends to occur in the opposite direction\-starting from high-level semantics and moving down to low-level features. Building upon this, we propose to benchmark the knowledge swapping task with the strategy of \textit{Learning Before Forgetting}. Comprehensive experiments on various tasks like image classification, object detection, and semantic segmentation validate the effectiveness of the proposed strategy. The source code is available at \href{https://github.com/xingmingyu123456/KnowledgeSwapping}{https://github.com/xingmingyu123456/KnowledgeSwapping}.
Abstract:The autonomous driving community is increasingly focused on addressing corner case problems, particularly those related to ensuring driving safety under adverse conditions (e.g., nighttime, fog, rain). To this end, the task of Adverse Condition Depth Estimation (ACDE) has gained significant attention. Previous approaches in ACDE have primarily relied on generative models, which necessitate additional target images to convert the sunny condition into adverse weather, or learnable parameters for feature augmentation to adapt domain gaps, resulting in increased model complexity and tuning efforts. Furthermore, unlike CLIP-based methods where textual and visual features have been pre-aligned, depth estimation models lack sufficient alignment between multimodal features, hindering coherent understanding under adverse conditions. To address these limitations, we propose Multi-Modality Driven LoRA (MMD-LoRA), which leverages low-rank adaptation matrices for efficient fine-tuning from source-domain to target-domain. It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning(VTCCL). During PDDA, the image encoder with MMD-LoRA generates target-domain visual representations, supervised by alignment loss that the source-target difference between language and image should be equal. Meanwhile, VTCCL bridges the gap between textual features from CLIP and visual features from diffusion model, pushing apart different weather representations (vision and text) and bringing together similar ones. Through extensive experiments, the proposed method achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets, underscoring robustness and efficiency in adapting to varied adverse environments.
Abstract:Data-driven deep learning models have enabled tremendous progress in change detection (CD) with the support of pixel-level annotations. However, collecting diverse data and manually annotating them is costly, laborious, and knowledge-intensive. Existing generative methods for CD data synthesis show competitive potential in addressing this issue but still face the following limitations: 1) difficulty in flexibly controlling change events, 2) dependence on additional data to train the data generators, 3) focus on specific change detection tasks. To this end, this paper focuses on the semantic CD (SCD) task and develops a multi-temporal SCD data generator ChangeDiff by exploring powerful diffusion models. ChangeDiff innovatively generates change data in two steps: first, it uses text prompts and a text-to-layout (T2L) model to create continuous layouts, and then it employs layout-to-image (L2I) to convert these layouts into images. Specifically, we propose multi-class distribution-guided text prompts (MCDG-TP), allowing for layouts to be generated flexibly through controllable classes and their corresponding ratios. Subsequently, to generalize the T2L model to the proposed MCDG-TP, a class distribution refinement loss is further designed as training supervision. %For the former, a multi-classdistribution-guided text prompt (MCDG-TP) is proposed to complement via controllable classes and ratios. To generalize the text-to-image diffusion model to the proposed MCDG-TP, a class distribution refinement loss is designed as training supervision. For the latter, MCDG-TP in three modes is proposed to synthesize new layout masks from various texts. Our generated data shows significant progress in temporal continuity, spatial diversity, and quality realism, empowering change detectors with accuracy and transferability. The code is available at https://github.com/DZhaoXd/ChangeDiff