Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Luis Pineda

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning

Apr 20, 2021
Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto Calandra

  Access Paper or Ask Questions

Off-Belief Learning

Mar 06, 2021
Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown, Jakob Foerster

  Access Paper or Ask Questions

On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning

Feb 26, 2021
Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra

* 19 pages, accepted by AISTATS 2021 

  Access Paper or Ask Questions

Active MR k-space Sampling with Reinforcement Learning

Jul 20, 2020
Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

* To appear in 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2020 

  Access Paper or Ask Questions

On the Evaluation of Conditional GANs

Jul 11, 2019
Terrance DeVries, Adriana Romero, Luis Pineda, Graham W. Taylor, Michal Drozdzal

  Access Paper or Ask Questions

Learning Causal State Representations of Partially Observable Environments

Jun 25, 2019
Amy Zhang, Zachary C. Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anandkumar, Laurent Itti, Joelle Pineau, Tommaso Furlanello

* 16 pages, 11 figures 

  Access Paper or Ask Questions

Elucidating image-to-set prediction: An analysis of models, losses and datasets

Apr 11, 2019
Luis Pineda, Amaia Salvador, Michal Drozdzal, Adriana Romero

  Access Paper or Ask Questions

Planning in Stochastic Environments with Goal Uncertainty

Oct 18, 2018
Sandhya Saisubramanian, Kyle Hollins Wray, Luis Pineda, Shlomo Zilberstein

* 8 pages, 5 figures 

  Access Paper or Ask Questions

Generalizing the Role of Determinization in Probabilistic Planning

Jul 29, 2017
Luis Pineda, Shlomo Zilberstein

  Access Paper or Ask Questions