One of the fundamental challenges associated with reinforcement learning (RL) is that collecting sufficient data can be both time-consuming and expensive. In this paper, we formalize a concept of time reversal symmetry in a Markov decision process (MDP), which builds upon the established structure of dynamically reversible Markov chains (DRMCs) and time-reversibility in classical physics. Specifically, we investigate the utility of this concept in reducing the sample complexity of reinforcement learning. We observe that utilizing the structure of time reversal in an MDP allows every environment transition experienced by an agent to be transformed into a feasible reverse-time transition, effectively doubling the number of experiences in the environment. To test the usefulness of this newly synthesized data, we develop a novel approach called time symmetric data augmentation (TSDA) and investigate its application in both proprioceptive and pixel-based state within the realm of off-policy, model-free RL. Empirical evaluations showcase how these synthetic transitions can enhance the sample efficiency of RL agents in time reversible scenarios without friction or contact. We also test this method in more realistic environments where these assumptions are not globally satisfied. We find that TSDA can significantly degrade sample efficiency and policy performance, but can also improve sample efficiency under the right conditions. Ultimately we conclude that time symmetry shows promise in enhancing the sample efficiency of reinforcement learning and provide guidance when the environment and reward structures are of an appropriate form for TSDA to be employed effectively.
Learning to solve tasks from a sparse reward signal is a major challenge for standard reinforcement learning (RL) algorithms. However, in the real world, agents rarely need to solve sparse reward tasks entirely from scratch. More often, we might possess prior experience to draw on that provides considerable guidance about which actions and outcomes are possible in the world, which we can use to explore more effectively for new tasks. In this work, we study how prior data without reward labels may be used to guide and accelerate exploration for an agent solving a new sparse reward task. We propose a simple approach that learns a reward model from online experience, labels the unlabeled prior data with optimistic rewards, and then uses it concurrently alongside the online data for downstream policy and critic optimization. This general formula leads to rapid exploration in several challenging sparse-reward domains where tabula rasa exploration is insufficient, including the AntMaze domain, Adroit hand manipulation domain, and a visual simulated robotic manipulation domain. Our results highlight the ease of incorporating unlabeled prior data into existing online RL algorithms, and the (perhaps surprising) effectiveness of doing so.
Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning to achieve multiple goals in an environment purely from offline datasets using sparse reward functions. Offline GCRL is pivotal for developing generalist agents capable of leveraging pre-existing datasets to learn diverse and reusable skills without hand-engineering reward functions. However, contemporary approaches to GCRL based on supervised learning and contrastive learning are often suboptimal in the offline setting. An alternative perspective on GCRL optimizes for occupancy matching, but necessitates learning a discriminator, which subsequently serves as a pseudo-reward for downstream RL. Inaccuracies in the learned discriminator can cascade, negatively influencing the resulting policy. We present a novel approach to GCRL under a new lens of mixture-distribution matching, leading to our discriminator-free method: SMORe. The key insight is combining the occupancy matching perspective of GCRL with a convex dual formulation to derive a learning objective that can better leverage suboptimal offline data. SMORe learns scores or unnormalized densities representing the importance of taking an action at a state for reaching a particular goal. SMORe is principled and our extensive experiments on the fully offline GCRL benchmark composed of robot manipulation and locomotion tasks, including high-dimensional observations, show that SMORe can outperform state-of-the-art baselines by a significant margin.
Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.
Goal-Conditioned Reinforcement Learning (RL) problems often have access to sparse rewards where the agent receives a reward signal only when it has achieved the goal, making policy optimization a difficult problem. Several works augment this sparse reward with a learned dense reward function, but this can lead to sub-optimal policies if the reward is misaligned. Moreover, recent works have demonstrated that effective shaping rewards for a particular problem can depend on the underlying learning algorithm. This paper introduces a novel way to encourage exploration called $f$-Policy Gradients, or $f$-PG. $f$-PG minimizes the f-divergence between the agent's state visitation distribution and the goal, which we show can lead to an optimal policy. We derive gradients for various f-divergences to optimize this objective. Our learning paradigm provides dense learning signals for exploration in sparse reward settings. We further introduce an entropy-regularized policy optimization objective, that we call $state$-MaxEnt RL (or $s$-MaxEnt RL) as a special case of our objective. We show that several metric-based shaping rewards like L2 can be used with $s$-MaxEnt RL, providing a common ground to study such metric-based shaping rewards with efficient exploration. We find that $f$-PG has better performance compared to standard policy gradient methods on a challenging gridworld as well as the Point Maze and FetchReach environments. More information on our website https://agarwalsiddhant10.github.io/projects/fpg.html.
Exploring rich environments and evaluating one's actions without prior knowledge is immensely challenging. In this paper, we propose Motif, a general method to interface such prior knowledge from a Large Language Model (LLM) with an agent. Motif is based on the idea of grounding LLMs for decision-making without requiring them to interact with the environment: it elicits preferences from an LLM over pairs of captions to construct an intrinsic reward, which is then used to train agents with reinforcement learning. We evaluate Motif's performance and behavior on the challenging, open-ended and procedurally-generated NetHack game. Surprisingly, by only learning to maximize its intrinsic reward, Motif achieves a higher game score than an algorithm directly trained to maximize the score itself. When combining Motif's intrinsic reward with the environment reward, our method significantly outperforms existing approaches and makes progress on tasks where no advancements have ever been made without demonstrations. Finally, we show that Motif mostly generates intuitive human-aligned behaviors which can be steered easily through prompt modifications, while scaling well with the LLM size and the amount of information given in the prompt.
Medical image segmentation modeling is a high-stakes task where understanding of uncertainty is crucial for addressing visual ambiguity. Prior work has developed segmentation models utilizing probabilistic or generative mechanisms to infer uncertainty from labels where annotators draw a singular boundary. However, as these annotations cannot represent an individual annotator's uncertainty, models trained on them produce uncertainty maps that are difficult to interpret. We propose a novel segmentation representation, Confidence Contours, which uses high- and low-confidence ``contours'' to capture uncertainty directly, and develop a novel annotation system for collecting contours. We conduct an evaluation on the Lung Image Dataset Consortium (LIDC) and a synthetic dataset. From an annotation study with 30 participants, results show that Confidence Contours provide high representative capacity without considerably higher annotator effort. We also find that general-purpose segmentation models can learn Confidence Contours at the same performance level as standard singular annotations. Finally, from interviews with 5 medical experts, we find that Confidence Contour maps are more interpretable than Bayesian maps due to representation of structural uncertainty.
Reinforcement Learning (RL), bolstered by the expressive capabilities of Deep Neural Networks (DNNs) for function approximation, has demonstrated considerable success in numerous applications. However, its practicality in addressing a wide range of real-world scenarios, characterized by diverse and unpredictable dynamics, noisy signals, and large state and action spaces, remains limited. This limitation stems from issues such as poor data efficiency, limited generalization capabilities, a lack of safety guarantees, and the absence of interpretability, among other factors. To overcome these challenges and improve performance across these crucial metrics, one promising avenue is to incorporate additional structural information about the problem into the RL learning process. Various sub-fields of RL have proposed methods for incorporating such inductive biases. We amalgamate these diverse methodologies under a unified framework, shedding light on the role of structure in the learning problem, and classify these methods into distinct patterns of incorporating structure. By leveraging this comprehensive framework, we provide valuable insights into the challenges associated with structured RL and lay the groundwork for a design pattern perspective on RL research. This novel perspective paves the way for future advancements and aids in the development of more effective and efficient RL algorithms that can potentially handle real-world scenarios better.
Learning policies which are robust to changes in the environment are critical for real world deployment of Reinforcement Learning agents. They are also necessary for achieving good generalization across environment shifts. We focus on bisimulation metrics, which provide a powerful means for abstracting task relevant components of the observation and learning a succinct representation space for training the agent using reinforcement learning. In this work, we extend the bisimulation framework to also account for context dependent observation shifts. Specifically, we focus on the simulator based learning setting and use alternate observations to learn a representation space which is invariant to observation shifts using a novel bisimulation based objective. This allows us to deploy the agent to varying observation settings during test time and generalize to unseen scenarios. We further provide novel theoretical bounds for simulator fidelity and performance transfer guarantees for using a learnt policy to unseen shifts. Empirical analysis on the high-dimensional image based control domains demonstrates the efficacy of our method.