Abstract:Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
Abstract:The rise of Large Language Models (LLMs) has enabled the development of specialized AI agents with domain-specific reasoning and interaction capabilities, particularly in healthcare. While recent frameworks simulate medical decision-making, they largely focus on single-turn tasks where a doctor agent receives full case information upfront -- diverging from the real-world diagnostic process, which is inherently uncertain, interactive, and iterative. In this paper, we introduce MIMIC-Patient, a structured dataset built from the MIMIC-III electronic health records (EHRs), designed to support dynamic, patient-level simulations. Building on this, we propose DynamiCare, a novel dynamic multi-agent framework that models clinical diagnosis as a multi-round, interactive loop, where a team of specialist agents iteratively queries the patient system, integrates new information, and dynamically adapts its composition and strategy. We demonstrate the feasibility and effectiveness of DynamiCare through extensive experiments, establishing the first benchmark for dynamic clinical decision-making with LLM-powered agents.