Carnegie Mellon University
Abstract:Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model's capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.
Abstract:In this paper, we present an innovative process-oriented math process reward model called \textbf{Math-Shepherd}, which assigns a reward score to each step of math problem solutions. The training of Math-Shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-Shepherd in two scenarios: 1) \textit{Verification}: Math-Shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) \textit{Reinforcement Learning}: Math-Shepherd is employed to reinforce LLMs with step-by-step Proximal Policy Optimization (PPO). With Math-Shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, the step-by-step PPO with Math-Shepherd significantly improves the accuracy of Mistral-7B (77.9\%$\to$84.1\% on GSM8K and 28.6\%$\to$33.0\% on MATH). The accuracy can be further enhanced to 89.1\% and 43.5\% on GSM8K and MATH with the verification of Math-Shepherd, respectively. We believe that automatic process supervision holds significant potential for the future evolution of LLMs.
Abstract:In the domain of supervised scene flow estimation, the process of manual labeling is both time-intensive and financially demanding. This paper introduces SSFlowNet, a semi-supervised approach for scene flow estimation, that utilizes a blend of labeled and unlabeled data, optimizing the balance between the cost of labeling and the precision of model training. SSFlowNet stands out through its innovative use of pseudo-labels, mainly reducing the dependency on extensively labeled datasets while maintaining high model accuracy. The core of our model is its emphasis on the intricate geometric structures of point clouds, both locally and globally, coupled with a novel spatial memory feature. This feature is adept at learning the geometric relationships between points over sequential time frames. By identifying similarities between labeled and unlabeled points, SSFlowNet dynamically constructs a correlation matrix to evaluate scene flow dependencies at individual point level. Furthermore, the integration of a flow consistency module within SSFlowNet enhances its capability to consistently estimate flow, an essential aspect for analyzing dynamic scenes. Empirical results demonstrate that SSFlowNet surpasses existing methods in pseudo-label generation and shows adaptability across varying data volumes. Moreover, our semi-supervised training technique yields promising outcomes even with different smaller ratio labeled data, marking a substantial advancement in the field of scene flow estimation.
Abstract:This paper explores preference distillation for large vision language models (LVLMs), improving their ability to generate helpful and faithful responses anchoring the visual context. We first build a vision-language feedback (VLFeedback) dataset utilizing AI annotation. Specifically, responses are generated by models sampled from 12 LVLMs, conditioned on multi-modal instructions sourced from various datasets. We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations. Furthermore, the preference supervision is distilled into Qwen-VL-Chat through the direct preference optimization (DPO) method. The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities, respectively. Silkie also demonstrates reduced hallucination by setting a new state-of-the-art score of 3.02 on the MMHal-Bench benchmark. Further analysis shows that DPO with our VLFeedback dataset mainly boosts the fine-grained perception and complex cognition abilities of LVLMs, leading to more comprehensive improvements compared to human-annotated preference datasets.
Abstract:Seam-cutting methods have been proven effective in the composition step of image stitching, especially for images with parallax. However, the effectiveness of seam-cutting usually depends on that images can be roughly aligned such that there exists a local region where a plausible seam can be found. For images with large parallax, current alignment methods often fall short of expectations. In this paper, we propose a local alignment and stitching method guided by seam quality evaluation. First, we use existing image alignment and seam-cutting methods to calculate an initial seam and evaluate the quality of pixels along the seam. Then, for pixels with low qualities, we separate their enclosing patches in the aligned images and locally align them by extracting modified dense correspondences via SIFT flow. Finally, we composite the aligned patches via seam-cutting and merge them into the original aligned result to generate the final mosaic. Experiments show that compared with the state-of-the-art seam-cutting methods, our result is more plausible and with fewer artifacts. The code will be available at https://github.com/tlliao/Seam-guided-local-alignment.
Abstract:The ability to perceive how objects change over time is a crucial ingredient in human intelligence. However, current benchmarks cannot faithfully reflect the temporal understanding abilities of video-language models (VidLMs) due to the existence of static visual shortcuts. To remedy this issue, we present VITATECS, a diagnostic VIdeo-Text dAtaset for the evaluation of TEmporal Concept underStanding. Specifically, we first introduce a fine-grained taxonomy of temporal concepts in natural language in order to diagnose the capability of VidLMs to comprehend different temporal aspects. Furthermore, to disentangle the correlation between static and temporal information, we generate counterfactual video descriptions that differ from the original one only in the specified temporal aspect. We employ a semi-automatic data collection framework using large language models and human-in-the-loop annotation to obtain high-quality counterfactual descriptions efficiently. Evaluation of representative video-language understanding models confirms their deficiency in temporal understanding, revealing the need for greater emphasis on the temporal elements in video-language research.
Abstract:Can we synthesize 3D humans interacting with scenes without learning from any 3D human-scene interaction data? We propose GenZI, the first zero-shot approach to generating 3D human-scene interactions. Key to GenZI is our distillation of interaction priors from large vision-language models (VLMs), which have learned a rich semantic space of 2D human-scene compositions. Given a natural language description and a coarse point location of the desired interaction in a 3D scene, we first leverage VLMs to imagine plausible 2D human interactions inpainted into multiple rendered views of the scene. We then formulate a robust iterative optimization to synthesize the pose and shape of a 3D human model in the scene, guided by consistency with the 2D interaction hypotheses. In contrast to existing learning-based approaches, GenZI circumvents the conventional need for captured 3D interaction data, and allows for flexible control of the 3D interaction synthesis with easy-to-use text prompts. Extensive experiments show that our zero-shot approach has high flexibility and generality, making it applicable to diverse scene types, including both indoor and outdoor environments.
Abstract:In recent times, there has been a growing interest in developing effective perception techniques for combining information from multiple modalities. This involves aligning features obtained from diverse sources to enable more efficient training with larger datasets and constraints, as well as leveraging the wealth of information contained in each modality. 2D and 3D Human Pose Estimation (HPE) are two critical perceptual tasks in computer vision, which have numerous downstream applications, such as Action Recognition, Human-Computer Interaction, Object tracking, etc. Yet, there are limited instances where the correlation between Image and 2D/3D human pose has been clearly researched using a contrastive paradigm. In this paper, we propose UniHPE, a unified Human Pose Estimation pipeline, which aligns features from all three modalities, i.e., 2D human pose estimation, lifting-based and image-based 3D human pose estimation, in the same pipeline. To align more than two modalities at the same time, we propose a novel singular value based contrastive learning loss, which better aligns different modalities and further boosts the performance. In our evaluation, UniHPE achieves remarkable performance metrics: MPJPE $50.5$mm on the Human3.6M dataset and PAMPJPE $51.6$mm on the 3DPW dataset. Our proposed method holds immense potential to advance the field of computer vision and contribute to various applications.
Abstract:Although 3D human pose estimation has gained impressive development in recent years, only a few works focus on infants, that have different bone lengths and also have limited data. Directly applying adult pose estimation models typically achieves low performance in the infant domain and suffers from out-of-distribution issues. Moreover, the limitation of infant pose data collection also heavily constrains the efficiency of learning-based models to lift 2D poses to 3D. To deal with the issues of small datasets, domain adaptation and data augmentation are commonly used techniques. Following this paradigm, we take advantage of an optimization-based method that utilizes generative priors to predict 3D infant keypoints from 2D keypoints without the need of large training data. We further apply a guided diffusion model to domain adapt 3D adult pose to infant pose to supplement small datasets. Besides, we also prove that our method, ZeDO-i, could attain efficient domain adaptation, even if only a small number of data is given. Quantitatively, we claim that our model attains state-of-the-art MPJPE performance of 43.6 mm on the SyRIP dataset and 21.2 mm on the MINI-RGBD dataset.
Abstract:Recent improvements in text generation have leveraged human feedback to improve the quality of the generated output. However, human feedback is not always available, especially during inference. In this work, we propose an inference time optimization method FITO to use fine-grained actionable feedback in the form of error type, error location and severity level that are predicted by a learned error pinpoint model for iterative refinement. FITO starts with an initial output, then iteratively incorporates the feedback via a refinement model that generates an improved output conditioned on the feedback. Given the uncertainty of consistent refined samples at iterative steps, we formulate iterative refinement into a local search problem and develop a simulated annealing based algorithm that balances exploration of the search space and optimization for output quality. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA) and topical summarization. We observe 0.8 and 0.7 MetricX gain on Chinese-English and English-German translation, 4.5 and 1.8 ROUGE-L gain at long form QA and topic summarization respectively, with a single iteration of refinement. With our simulated annealing algorithm, we see further quality improvements, including up to 1.7 MetricX improvements over the baseline approach.