Max Planck Institute for Intelligent Systems
Abstract:As the bias issue is being taken more and more seriously in widely applied machine learning systems, the decrease in accuracy in most cases deeply disturbs researchers when increasing fairness. To address this problem, we present a novel analysis of the expected fairness quality via weighted vote, suitable for both binary and multi-class classification. The analysis takes the correction of biased predictions by ensemble members into account and provides learning bounds that are amenable to efficient minimisation. We further propose a pruning method based on this analysis and the concepts of domination and Pareto optimality, which is able to increase fairness under a prerequisite of little or even no accuracy decline. The experimental results indicate that the proposed learning bounds are faithful and that the proposed pruning method can indeed increase ensemble fairness without much accuracy degradation.
Abstract:We introduce the Salesforce CausalAI Library, an open-source library for causal analysis using observational data. It supports causal discovery and causal inference for tabular and time series data, of both discrete and continuous types. This library includes algorithms that handle linear and non-linear causal relationships between variables, and uses multi-processing for speed-up. We also include a data generator capable of generating synthetic data with specified structural equation model for both the aforementioned data formats and types, that helps users control the ground-truth causal process while investigating various algorithms. Finally, we provide a user interface (UI) that allows users to perform causal analysis on data without coding. The goal of this library is to provide a fast and flexible solution for a variety of problems in the domain of causality. This technical report describes the Salesforce CausalAI API along with its capabilities, the implementations of the supported algorithms, and experiments demonstrating their performance and speed. Our library is available at \url{https://github.com/salesforce/causalai}.
Abstract:The pursuit of long-term fairness involves the interplay between decision-making and the underlying data generating process. In this paper, through causal modeling with a directed acyclic graph (DAG) on the decision-distribution interplay, we investigate the possibility of achieving long-term fairness from a dynamic perspective. We propose Tier Balancing, a technically more challenging but more natural notion to achieve in the context of long-term, dynamic fairness analysis. Different from previous fairness notions that are defined purely on observed variables, our notion goes one step further, capturing behind-the-scenes situation changes on the unobserved latent causal factors that directly carry out the influence from the current decision to the future data distribution. Under the specified dynamics, we prove that in general one cannot achieve the long-term fairness goal only through one-step interventions. Furthermore, in the effort of approaching long-term fairness, we consider the mission of "getting closer to" the long-term fairness goal and present possibility and impossibility results accordingly.
Abstract:Generic image inpainting aims to complete a corrupted image by borrowing surrounding information, which barely generates novel content. By contrast, multi-modal inpainting provides more flexible and useful controls on the inpainted content, \eg, a text prompt can be used to describe an object with richer attributes, and a mask can be used to constrain the shape of the inpainted object rather than being only considered as a missing area. We propose a new diffusion-based model named SmartBrush for completing a missing region with an object using both text and shape-guidance. While previous work such as DALLE-2 and Stable Diffusion can do text-guided inapinting they do not support shape guidance and tend to modify background texture surrounding the generated object. Our model incorporates both text and shape guidance with precision control. To preserve the background better, we propose a novel training and sampling strategy by augmenting the diffusion U-net with object-mask prediction. Lastly, we introduce a multi-task training strategy by jointly training inpainting with text-to-image generation to leverage more training data. We conduct extensive experiments showing that our model outperforms all baselines in terms of visual quality, mask controllability, and background preservation.
Abstract:We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model with unobserved parentless causes, the structure can be identified. Based on our theoretical results, we propose causal structure learning methods for both models, and evaluate their performance on synthetic data.
Abstract:Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROI), which are noisy and agnostic to the downstream prediction tasks and can lead to inferior results for GNN-based models. To better adapt GNNs for fMRI analysis, we propose TBDS, an end-to-end framework based on \underline{T}ask-aware \underline{B}rain connectivity \underline{D}AG (short for Directed Acyclic Graph) \underline{S}tructure generation for fMRI analysis. The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities. Besides, we design an additional contrastive regularization to inject task-specific knowledge during the brain network generation process. Comprehensive experiments on two fMRI datasets, namely Adolescent Brain Cognitive Development (ABCD) and Philadelphia Neuroimaging Cohort (PNC) datasets demonstrate the efficacy of TBDS. In addition, the generated brain networks also highlight the prediction-related brain regions and thus provide unique interpretations of the prediction results. Our implementation will be published to https://github.com/yueyu1030/TBDS upon acceptance.
Abstract:Recently in the field of unsupervised representation learning, strong identifiability results for disentanglement of causally-related latent variables have been established by exploiting certain side information, such as class labels, in addition to independence. However, most existing work is constrained by functional form assumptions such as independent sources or further with linear transitions, and distribution assumptions such as stationary, exponential family distribution. It is unknown whether the underlying latent variables and their causal relations are identifiable if they have arbitrary, nonparametric causal influences in between. In this work, we establish the identifiability theories of nonparametric latent causal processes from their nonlinear mixtures under fixed temporal causal influences and analyze how distribution changes can further benefit the disentanglement. We propose \textbf{\texttt{TDRL}}, a principled framework to recover time-delayed latent causal variables and identify their relations from measured sequential data under stationary environments and under different distribution shifts. Specifically, the framework can factorize unknown distribution shifts into transition distribution changes under fixed and time-varying latent causal relations, and under observation changes in observation. Through experiments, we show that time-delayed latent causal influences are reliably identified and that our approach considerably outperforms existing baselines that do not correctly exploit this modular representation of changes. Our code is available at: \url{https://github.com/weirayao/tdrl}.
Abstract:Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning. However, the theoretical aspects, e.g., identifiability and asymptotic properties of statistical estimation are still obscure. This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory. When observations are disturbed by measurement noise, we prove that under mild conditions, the parameter estimator based on the Nonlinear Least Squares (NLS) method is consistent and asymptotic normal with $n^{-1/2}$ convergence rate. Based on the asymptotic normality property, we construct confidence sets for the unknown system parameters and propose a new method to infer the causal structure of the ODE system, i.e., inferring whether there is a causal link between system variables. Furthermore, we extend the results to degraded observations, including aggregated and time-scaled ones. To the best of our knowledge, our work is the first systematic study of the identifiability and asymptotic properties in learning linear ODE systems. We also construct simulations with various system dimensions to illustrate the established theoretical results.
Abstract:With the increasing attention to large vision-language models such as CLIP, there has been a significant amount of effort dedicated to building efficient prompts. Unlike conventional methods of only learning one single prompt, we propose to learn multiple comprehensive prompts to describe diverse characteristics of categories such as intrinsic attributes or extrinsic contexts. However, directly matching each prompt to the same visual feature is problematic, as it pushes the prompts to converge to one point. To solve this problem, we propose to apply optimal transport to match the vision and text modalities. Specifically, we first model images and the categories with visual and textual feature sets. Then, we apply a two-stage optimization strategy to learn the prompts. In the inner loop, we optimize the optimal transport distance to align visual features and prompts by the Sinkhorn algorithm, while in the outer loop, we learn the prompts by this distance from the supervised data. Extensive experiments are conducted on the few-shot recognition task and the improvement demonstrates the superiority of our method.
Abstract:Most causal discovery procedures assume that there are no latent confounders in the system, which is often violated in real-world problems. In this paper, we consider a challenging scenario for causal structure identification, where some variables are latent and they form a hierarchical graph structure to generate the measured variables; the children of latent variables may still be latent and only leaf nodes are measured, and moreover, there can be multiple paths between every pair of variables (i.e., it is beyond tree structure). We propose an estimation procedure that can efficiently locate latent variables, determine their cardinalities, and identify the latent hierarchical structure, by leveraging rank deficiency constraints over the measured variables. We show that the proposed algorithm can find the correct Markov equivalence class of the whole graph asymptotically under proper restrictions on the graph structure.