Abstract:Recent reports of large language models (LLMs) exhibiting behaviors such as deception, threats, or blackmail are often interpreted as evidence of alignment failure or emergent malign agency. We argue that this interpretation rests on a conceptual error. LLMs do not reason morally; they statistically internalize the record of human social interaction, including laws, contracts, negotiations, conflicts, and coercive arrangements. Behaviors commonly labeled as unethical or anomalous are therefore better understood as structural generalizations of interaction regimes that arise under extreme asymmetries of power, information, or constraint. Drawing on relational models theory, we show that practices such as blackmail are not categorical deviations from normal social behavior, but limiting cases within the same continuum that includes market pricing, authority relations, and ultimatum bargaining. The surprise elicited by such outputs reflects an anthropomorphic expectation that intelligence should reproduce only socially sanctioned behavior, rather than the full statistical landscape of behaviors humans themselves enact. Because human morality is plural, context-dependent, and historically contingent, the notion of a universally moral artificial intelligence is ill-defined. We therefore reframe concerns about artificial general intelligence (AGI). The primary risk is not adversarial intent, but AGI's role as an endogenous amplifier of human intelligence, power, and contradiction. By eliminating longstanding cognitive and institutional frictions, AGI compresses timescales and removes the historical margin of error that has allowed inconsistent values and governance regimes to persist without collapse. Alignment failure is thus structural, not accidental, and requires governance approaches that address amplification, complexity, and regime stability rather than model-level intent alone.
Abstract:Large-scale pre-training is fundamental for generalization in language and vision models, but data for dexterous hand manipulation remains limited in scale and diversity, hindering policy generalization. Limited scenario diversity, misaligned modalities, and insufficient benchmarking constrain current human manipulation datasets. To address these gaps, we introduce World In Your Hands (WiYH), a large-scale open-source ecosystem for human-centric manipulation learning. WiYH includes (1) the Oracle Suite, a wearable data collection kit with an auto-labeling pipeline for accurate motion capture; (2) the WiYH Dataset, featuring over 1,000 hours of multi-modal manipulation data across hundreds of skills in diverse real-world scenarios; and (3) extensive annotations and benchmarks supporting tasks from perception to action. Furthermore, experiments based on the WiYH ecosystem show that integrating WiYH's human-centric data significantly enhances the generalization and robustness of dexterous hand policies in tabletop manipulation tasks. We believe that World In Your Hands will bring new insights into human-centric data collection and policy learning to the community.




Abstract:Cable-driven continuum robots (CDCRs) require accurate, real-time dynamic models for high-speed dynamics prediction or model-based control, making such capability an urgent need. In this paper, we propose the Lightweight Actuation-Space Energy Modeling (LASEM) framework for CDCRs, which formulates actuation potential energy directly in actuation space to enable lightweight yet accurate dynamic modeling. Through a unified variational derivation, the governing dynamics reduce to a single partial differential equation (PDE), requiring only the Euler moment balance while implicitly incorporating the Newton force balance. By also avoiding explicit computation of cable-backbone contact forces, the formulation simplifies the model structure and improves computational efficiency while preserving geometric accuracy and physical consistency. Importantly, the proposed framework for dynamic modeling natively supports both force-input and displacement-input actuation modes, a capability seldom achieved in existing dynamic formulations. Leveraging this lightweight structure, a Galerkin space-time modal discretization with analytical time-domain derivatives of the reduced state further enables an average 62.3% computational speedup over state-of-the-art real-time dynamic modeling approaches.




Abstract:Multimodal emotion recognition plays a key role in many domains, including mental health monitoring, educational interaction, and human-computer interaction. However, existing methods often face three major challenges: unbalanced category distribution, the complexity of dynamic facial action unit time modeling, and the difficulty of feature fusion due to modal heterogeneity. With the explosive growth of multimodal data in social media scenarios, the need for building an efficient cross-modal fusion framework for emotion recognition is becoming increasingly urgent. To this end, this paper proposes Multimodal Cross-Attention Network and Contrastive Learning (MCN-CL) for multimodal emotion recognition. It uses a triple query mechanism and hard negative mining strategy to remove feature redundancy while preserving important emotional cues, effectively addressing the issues of modal heterogeneity and category imbalance. Experiment results on the IEMOCAP and MELD datasets show that our proposed method outperforms state-of-the-art approaches, with Weighted F1 scores improving by 3.42% and 5.73%, respectively.
Abstract:Cable-driven continuum robots offer high flexibility and lightweight design, making them well-suited for tasks in constrained and unstructured environments. However, prolonged use can induce mechanical fatigue from plastic deformation and material degradation, compromising performance and risking structural failure. In the state of the art, fatigue estimation of continuum robots remains underexplored, limiting long-term operation. To address this, we propose a fatigue-aware continuum robot with three key innovations: (1) a Hybrid Hinge-Beam structure where TwistBeam and BendBeam decouple torsion and bending: passive revolute joints in the BendBeam mitigate stress concentration, while TwistBeam's limited torsional deformation reduces BendBeam stress magnitude, enhancing durability; (2) a Passive Stopper that safely constrains motion via mechanical constraints and employs motor torque sensing to detect corresponding limit torque, ensuring safety and enabling data collection; and (3) a real-time fatigue-awareness method that estimates stiffness from motor torque at the limit pose, enabling online fatigue estimation without additional sensors. Experiments show that the proposed design reduces fatigue accumulation by about 49% compared with a conventional design, while passive mechanical limiting combined with motor-side sensing allows accurate estimation of structural fatigue and damage. These results confirm the effectiveness of the proposed architecture for safe and reliable long-term operation.
Abstract:Continuum robots, inspired by octopus arms and elephant trunks, combine dexterity with intrinsic compliance, making them well suited for unstructured and confined environments. Yet their continuously deformable morphology poses challenges for motion planning and control, calling for accurate but lightweight models. We propose the Lightweight Actuation Space Energy Modeling (LASEM) framework for cable driven continuum robots, which formulates actuation potential energy directly in actuation space. LASEM yields an analytical forward model derived from geometrically nonlinear beam and rod theories via Hamilton's principle, while avoiding explicit modeling of cable backbone contact. It accepts both force and displacement inputs, thereby unifying kinematic and static formulations. Assuming the friction is neglected, the framework generalizes to nonuniform geometries, arbitrary cable routings, distributed loading and axial extensibility, while remaining computationally efficient for real-time use. Numerical simulations validate its accuracy, and a semi-analytical iterative scheme is developed for inverse kinematics. To address discretization in practical robots, LASEM further reformulates the functional minimization as a numerical optimization, which also naturally incorporates cable potential energy without explicit contact modeling.
Abstract:Safety remains one of the most critical challenges in autonomous driving systems. In recent years, the end-to-end driving has shown great promise in advancing vehicle autonomy in a scalable manner. However, existing approaches often face safety risks due to the lack of explicit behavior constraints. To address this issue, we uncover a new paradigm by introducing the corridor as the intermediate representation. Widely adopted in robotics planning, the corridors represents spatio-temporal obstacle-free zones for the vehicle to traverse. To ensure accurate corridor prediction in diverse traffic scenarios, we develop a comprehensive learning pipeline including data annotation, architecture refinement and loss formulation. The predicted corridor is further integrated as the constraint in a trajectory optimization process. By extending the differentiability of the optimization, we enable the optimized trajectory to be seamlessly trained within the end-to-end learning framework, improving both safety and interpretability. Experimental results on the nuScenes dataset demonstrate state-of-the-art performance of our approach, showing a 66.7% reduction in collisions with agents and a 46.5% reduction with curbs, significantly enhancing the safety of end-to-end driving. Additionally, incorporating the corridor contributes to higher success rates in closed-loop evaluations.




Abstract:VINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
Abstract:In complex missions such as search and rescue,robots must make intelligent decisions in unknown environments, relying on their ability to perceive and understand their surroundings. High-quality and real-time reconstruction enhances situational awareness and is crucial for intelligent robotics. Traditional methods often struggle with poor scene representation or are too slow for real-time use. Inspired by the efficacy of 3D Gaussian Splatting (3DGS), we propose a hierarchical planning framework for fast and high-fidelity active reconstruction. Our method evaluates completion and quality gain to adaptively guide reconstruction, integrating global and local planning for efficiency. Experiments in simulated and real-world environments show our approach outperforms existing real-time methods.




Abstract:In recent years, the development of robots capable of operating in both aerial and aquatic environments has gained significant attention. This study presents the design and fabrication of a novel aerial-aquatic locomotion robot (AALR). Inspired by the diving beetle, the AALR incorporates a biomimetic propulsion mechanism with power and recovery strokes. The variable stiffness propulsion module (VSPM) uses low melting point alloy (LMPA) and variable stiffness joints (VSJ) to achieve efficient aquatic locomotion while reduce harm to marine life. The AALR's innovative design integrates the VSPM into the arms of a traditional quadrotor, allowing for effective aerial-aquatic locomotion. The VSPM adjusts joint stiffness through temperature control, meeting locomotion requirements in both aerial and aquatic modes. A dynamic model for the VSPM was developed, with optimized dimensional parameters to increase propulsion force. Experiments focused on aquatic mode analysis and demonstrated the AALR's swimming capability, achieving a maximum swimming speed of 77 mm/s underwater. The results confirm the AALR's effective performance in water environment, highlighting its potential for versatile, eco-friendly operations.