Abstract:We introduce PuppetAI, a modular soft robot interaction platform. This platform offers a scalable cable-driven actuation system and a customizable, puppet-inspired robot gesture framework, supporting a multitude of interaction gesture robot design formats. The platform comprises a four-layer decoupled software architecture that includes perceptual processing, affective modeling, motion scheduling, and low-level actuation. We also implemented an affective expression loop that connects human input to the robot platform by producing real-time emotional gestural responses to human vocal input. For our own designs, we have worked with nuanced gestures enacted by "soft robots" with enhanced dexterity and "pleasant-to-touch" plush exteriors. By reducing operational complexity and production costs while enhancing customizability, our work creates an adaptable and accessible foundation for future tactile-based expressive robot research. Our goal is to provide a platform that allows researchers to independently construct or refine highly specific gestures and movements performed by social robots.
Abstract:Cable-driven continuum robots offer high flexibility and lightweight design, making them well-suited for tasks in constrained and unstructured environments. However, prolonged use can induce mechanical fatigue from plastic deformation and material degradation, compromising performance and risking structural failure. In the state of the art, fatigue estimation of continuum robots remains underexplored, limiting long-term operation. To address this, we propose a fatigue-aware continuum robot with three key innovations: (1) a Hybrid Hinge-Beam structure where TwistBeam and BendBeam decouple torsion and bending: passive revolute joints in the BendBeam mitigate stress concentration, while TwistBeam's limited torsional deformation reduces BendBeam stress magnitude, enhancing durability; (2) a Passive Stopper that safely constrains motion via mechanical constraints and employs motor torque sensing to detect corresponding limit torque, ensuring safety and enabling data collection; and (3) a real-time fatigue-awareness method that estimates stiffness from motor torque at the limit pose, enabling online fatigue estimation without additional sensors. Experiments show that the proposed design reduces fatigue accumulation by about 49% compared with a conventional design, while passive mechanical limiting combined with motor-side sensing allows accurate estimation of structural fatigue and damage. These results confirm the effectiveness of the proposed architecture for safe and reliable long-term operation.